Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 1-15.DOI: 10.11996/JG.j.2095-302X.2023010001
• Review • Previous Articles Next Articles
LI Hong-an1(), ZHENG Qiao-xue1, TAO Ruo-lin1, ZHANG Min1, LI Zhan-li1(
), KANG Bao-sheng2
Received:
2022-05-18
Revised:
2022-06-13
Online:
2023-10-31
Published:
2023-02-16
Contact:
LI Zhan-li
About author:
LI Hong-an (1978-), associate professor, Ph.D. His main research interests cover computer graphics and visual media computing. E-mail:honganli@xust.edu.cn
Supported by:
CLC Number:
LI Hong-an, ZHENG Qiao-xue, TAO Ruo-lin, ZHANG Min, LI Zhan-li, KANG Bao-sheng. Review of image super-resolutionbased on deep learning[J]. Journal of Graphics, 2023, 44(1): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010001
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 |
SRCNN[ | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 |
VDSR[ | 37.53 | 0.958 7 | 33.05 | 0.912 7 | 31.90 | 0.896 0 |
DRCN[ | 37.63 | 0.958 8 | 33.04 | 0.918 8 | 31.85 | 0.894 2 |
MDSR[ | 38.11 | 0.960 2 | 33.85 | 0.919 8 | 32.29 | 0.900 7 |
RDN[ | 38.24 | 0.961 4 | 34.01 | 0.921 2 | 32.34 | 0.901 7 |
MSRN[ | 38.08 | 0.960 5 | 33.74 | 0.917 0 | 32.23 | 0.900 2 |
MSFFRN[ | 38.15 | 0.961 0 | 33.88 | 0.919 5 | 2.29 | 0.901 0 |
MAFFSRN[ | 37.97 | 0.960 3 | 33.49 | 0.917 0 | 32.14 | 0.899 4 |
IGNN[ | 38.24 | 0.961 3 | 34.07 | 0.921 7 | 32.41 | 0.902 5 |
HAN[ | 38.27 | 0.961 4 | 34.16 | 0.921 7 | 32.41 | 0.902 7 |
Table 1 Quantitative results of different image SR methods at a scaling factor of 2
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 |
SRCNN[ | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 |
VDSR[ | 37.53 | 0.958 7 | 33.05 | 0.912 7 | 31.90 | 0.896 0 |
DRCN[ | 37.63 | 0.958 8 | 33.04 | 0.918 8 | 31.85 | 0.894 2 |
MDSR[ | 38.11 | 0.960 2 | 33.85 | 0.919 8 | 32.29 | 0.900 7 |
RDN[ | 38.24 | 0.961 4 | 34.01 | 0.921 2 | 32.34 | 0.901 7 |
MSRN[ | 38.08 | 0.960 5 | 33.74 | 0.917 0 | 32.23 | 0.900 2 |
MSFFRN[ | 38.15 | 0.961 0 | 33.88 | 0.919 5 | 2.29 | 0.901 0 |
MAFFSRN[ | 37.97 | 0.960 3 | 33.49 | 0.917 0 | 32.14 | 0.899 4 |
IGNN[ | 38.24 | 0.961 3 | 34.07 | 0.921 7 | 32.41 | 0.902 5 |
HAN[ | 38.27 | 0.961 4 | 34.16 | 0.921 7 | 32.41 | 0.902 7 |
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 |
SRCNN[ | 32.75 | 0.909 0 | 29.30 | 0.821 5 | 28.41 | 0.786 3 |
VDSR[ | 33.66 | 0.921 3 | 29.78 | 0.831 8 | 28.83 | 0.797 6 |
DRCN[ | 33.82 | 0.922 6 | 29.76 | 0.911 8 | 28.80 | 0.796 3 |
MDSR[ | 38.11 | 0.960 2 | 30.44 | 0.845 2 | 29.25 | 0.809 1 |
RDN[ | 34.71 | 0.929 6 | 30.57 | 0.846 8 | 29.26 | 0.809 3 |
MSRN[ | 34.38 | 0.926 2 | 30.34 | 0.839 5 | 29.08 | 0.804 1 |
MSFFRN[ | 34.65 | 0.929 2 | 30.53 | 0.846 3 | 29.23 | 0.808 6 |
MAFFSRN[ | 34.32 | 0.926 9 | 30.35 | 0.842 9 | 29.09 | 0.805 2 |
IGNN[ | 34.72 | 0.929 8 | 30.66 | 0.848 4 | 29.31 | 0.810 5 |
HAN[ | 34.75 | 0.929 9 | 30.67 | 0.848 3 | 29.32 | 0.811 0 |
Table 2 Quantitative results of different image SR methods at a scaling factor of 3
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 |
SRCNN[ | 32.75 | 0.909 0 | 29.30 | 0.821 5 | 28.41 | 0.786 3 |
VDSR[ | 33.66 | 0.921 3 | 29.78 | 0.831 8 | 28.83 | 0.797 6 |
DRCN[ | 33.82 | 0.922 6 | 29.76 | 0.911 8 | 28.80 | 0.796 3 |
MDSR[ | 38.11 | 0.960 2 | 30.44 | 0.845 2 | 29.25 | 0.809 1 |
RDN[ | 34.71 | 0.929 6 | 30.57 | 0.846 8 | 29.26 | 0.809 3 |
MSRN[ | 34.38 | 0.926 2 | 30.34 | 0.839 5 | 29.08 | 0.804 1 |
MSFFRN[ | 34.65 | 0.929 2 | 30.53 | 0.846 3 | 29.23 | 0.808 6 |
MAFFSRN[ | 34.32 | 0.926 9 | 30.35 | 0.842 9 | 29.09 | 0.805 2 |
IGNN[ | 34.72 | 0.929 8 | 30.66 | 0.848 4 | 29.31 | 0.810 5 |
HAN[ | 34.75 | 0.929 9 | 30.67 | 0.848 3 | 29.32 | 0.811 0 |
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 |
SRCNN[ | 30.48 | 0.862 8 | 27.50 | 0.751 3 | 26.90 | 0.710 1 |
VDSR[ | 31.35 | 0.883 8 | 28.02 | 0.767 8 | 27.29 | 0.725 2 |
DRCN[ | 31.53 | 0.885 4 | 28.02 | 0.767 0 | 27.23 | 0.723 3 |
SRGAN[ | 32.05 | 0.891 0 | 28.53 | 0.780 4 | 27.57 | 0.735 4 |
MDSR[ | 32.50 | 0.897 3 | 28.72 | 0.785 7 | 27.72 | 0.741 8 |
RDN[ | 32.47 | 0.899 0 | 28.81 | 0.787 1 | 27.72 | 0.741 9 |
MSRN[ | 32.07 | 0.890 3 | 28.60 | 0.775 1 | 27.52 | 0.727 3 |
MSFFRN[ | 32.44 | 0.897 8 | 28.76 | 0.786 0 | 27.67 | 0.740 0 |
MAFFSRN[ | 32.18 | 0.894 8 | 28.58 | 0.781 2 | 27.57 | 0.736 1 |
IGNN[ | 32.57 | 0.899 8 | 28.85 | 0.789 1 | 27.77 | 0.743 4 |
HAN[ | 32.64 | 0.900 2 | 28.90 | 0.789 0 | 27.80 | 0.744 2 |
MSFIN[ | 32.28 | 0.895 7 | 28.57 | 0.781 3 | 27.56 | 0.735 8 |
Table 3 Quantitative results of different image SR methods at a scaling factor of 4
算法 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Bicubic[ | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 |
SRCNN[ | 30.48 | 0.862 8 | 27.50 | 0.751 3 | 26.90 | 0.710 1 |
VDSR[ | 31.35 | 0.883 8 | 28.02 | 0.767 8 | 27.29 | 0.725 2 |
DRCN[ | 31.53 | 0.885 4 | 28.02 | 0.767 0 | 27.23 | 0.723 3 |
SRGAN[ | 32.05 | 0.891 0 | 28.53 | 0.780 4 | 27.57 | 0.735 4 |
MDSR[ | 32.50 | 0.897 3 | 28.72 | 0.785 7 | 27.72 | 0.741 8 |
RDN[ | 32.47 | 0.899 0 | 28.81 | 0.787 1 | 27.72 | 0.741 9 |
MSRN[ | 32.07 | 0.890 3 | 28.60 | 0.775 1 | 27.52 | 0.727 3 |
MSFFRN[ | 32.44 | 0.897 8 | 28.76 | 0.786 0 | 27.67 | 0.740 0 |
MAFFSRN[ | 32.18 | 0.894 8 | 28.58 | 0.781 2 | 27.57 | 0.736 1 |
IGNN[ | 32.57 | 0.899 8 | 28.85 | 0.789 1 | 27.77 | 0.743 4 |
HAN[ | 32.64 | 0.900 2 | 28.90 | 0.789 0 | 27.80 | 0.744 2 |
MSFIN[ | 32.28 | 0.895 7 | 28.57 | 0.781 3 | 27.56 | 0.735 8 |
[1] |
MAHAPATRA D, BOZORGTABAR B, GARNAVI R. Image super-resolution using progressive generative adversarial networks for medical image analysis[J]. Computerized Medical Imaging and Graphics, 2019, 71: 30-39.
DOI PMID |
[2] | MORIN R, BASARAB A, KOUAMÉ D. Alternating direction method of multipliers framework for super-resolution in ultrasound imaging[C]//2012 9th IEEE International Symposium on Biomedical Imaging. New York: IEEE Press, 2012: 1595-1598. |
[3] | 左艳, 黄钢, 聂生东. 深度学习在医学影像智能处理中的应用与挑战[J]. 中国图象图形学报, 2021, 26(2): 305-315. |
ZUO Y, HUANG G, NIE S D. Application and challenges of deep learning in the intelligent processing of medical images[J]. Journal of Image and Graphics, 2021, 26(2): 305-315 (in Chinese). | |
[4] |
MARIO H J, RUBEN F B, PAOLETTI M E, et al. A new deep generative network for unsupervised remote sensing single-image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6792-6810.
DOI URL |
[5] |
HA V K, REN J C, XU X Y, et al. Deep learning based single image super-resolution: a survey[J]. International Journal of Automation and Computing, 2019, 16(4): 413-426.
DOI |
[6] | LI J C, PEI Z H, ZENG T Y. From beginner to master: a survey for deep learning-based single-image super-resolution[EB/OL]. (2021-01-29) [2022-02-09]. https://arxiv.org/abs/2109.14335. |
[7] |
HARRIS J L. Diffraction and resolving power[J]. JOSA, 1964, 54(7): 931-936.
DOI URL |
[8] | TSAI R, HUANG T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1(2): 317-339. |
[9] |
FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
PMID |
[10] |
PARK J S, LEE S W. An example-based face hallucination method for single-frame, low-resolution facial images[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1806-1816.
DOI URL |
[11] |
YANG W M, ZHANG X C, TIAN Y P, et al. Deep learning for single image super-resolution: a brief review[J]. IEEE Transactions on Multimedia, 2019, 21(12): 3106-3121.
DOI URL |
[12] | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]// European Conference on Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 184-199. |
[13] | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1646-1654. |
[14] | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1874-1883. |
[15] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1132-1140. |
[16] | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 105-114. |
[17] | WANG Z X, GAO G W, LI J C, et al. Lightweight image super-resolution with multi-scale feature interaction network[C]// 2021 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2021: 1-6. |
[18] |
VAN OUWERKERK J D. Image super-resolution survey[J]. Image and Vision Computing, 2006, 24(10): 1039-1052.
DOI URL |
[19] | YANG C Y, MA C, YANG M H. Single-image super-resolution: a benchmark[M]//Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 372-386. |
[20] |
LI X, ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527.
DOI PMID |
[21] |
CHEN M J, HUANG C H, LEE W L. A fast edge-oriented algorithm for image interpolation[J]. Image and Vision Computing, 2005, 23(9): 791-798.
DOI URL |
[22] | PRASHANTH H S, SHASHIDHARA H L, BALASUBRAMANYA MURTHY K N. Image scaling comparison using universal image quality index[C]//2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies. New York: IEEE Press, 2009: 859-863. |
[23] | GRIBBON K T, BAILEY D G. A novel approach to real-time bilinear interpolation[C]//Proceedings of DELTA 2004. Second IEEE International Workshop on Electronic Design, Test and Applications. New York: IEEE Press, 2004: 126-131. |
[24] |
KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160.
DOI URL |
[25] |
谢海平, 谢凯利, 杨海涛. 图像超分辨率方法研究进展[J]. 计算机工程与应用, 2020, 56(19): 34-41.
DOI |
XIE H P, XIE K L, YANG H T. Research progress of image super-resolution methods[J]. Computer Engineering and Applications, 2020, 56(19): 34-41 (in Chinese).
DOI |
|
[26] |
唐艳秋, 潘泓, 朱亚平, 等. 图像超分辨率重建研究综述[J]. 电子学报, 2020, 48(7): 1407-1420.
DOI |
TANG Y Q, PAN H, ZHU Y P, et al. A survey of image super-resolution reconstruction[J]. Acta Electronica Sinica, 2020, 48(7): 1407-1420 (in Chinese). | |
[27] | DAI S Y, HAN M, WU Y, et al. Bilateral back-projection for single image super resolution[C]// 2007 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2007: 1039-1042. |
[28] |
ZHANG H C, ZHANG Y N, LI H S, et al. Generative Bayesian image super resolution with natural image prior[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4054-4067.
DOI PMID |
[29] | CHANG H, YEUNG D Y, XIONG Y M. SRthrough neighbor embedding[EB/OL]. [2022-03-05]. https://ieeexplore.ieee.org/abstract/document/1315043. |
[30] |
YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
DOI PMID |
[31] | 满开亮, 汪友生, 刘继荣. 基于稠密残差网络的图像超分辨率重建算法[J]. 图学学报, 2021, 42(4): 556-562. |
MAN K L, WANG Y S, LIU J R. Image super-resolution reconstruction algorithm based on dense residual network[J]. Journal of Graphics, 2021, 42(4): 556-562 (in Chinese). | |
[32] | ZHAO T, WU X Q. Pyramid feature attention network for saliency detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3080-3089. |
[33] | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 294-310. |
[34] | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 2472-2481. |
[35] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[36] | NIU B, WEN W L, REN W Q, et al. Single image super-resolution via a holistic attention network[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 191-207. |
[37] |
ROY S K, MANNA S, SONG T C, et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7831-7843.
DOI URL |
[38] | ZHANG Q, CUI Z P, NIU X G, et al. Image segmentation with pyramid dilated convolution based on ResNet and U-net[M]// Neural Information Processing. Cham: Springer International Publishing, 2017: 364-372. |
[39] | LI J C, FANG F M, MEI K F, et al. Multi-scale residual network for image super-resolution[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 527-542. |
[40] |
QIN J H, HUANG Y J, WEN W S. Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020, 379: 334-342.
DOI URL |
[41] | BULAT A, YANG J, TZIMIROPOULOS G. To learn image super-resolution, use a GAN to learn how to do image degradation first[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 187-202. |
[42] | GU J, SHEN Y, ZHOU B. Image processing using multi-code gan prior[EB/OL]. [2022-02-05]. https://ieeexplore.ieee.org/document/9157000. |
[43] | YUAN Y, LIU S Y, ZHANG J W, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2018: 814. 1-814.10 |
[44] | GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1604-1613. |
[45] | ZHOU R F, SÜSSTRUNK S. Kernel modeling super-resolution on real low-resolution images[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2433-2443. |
[46] | PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Unsupervised single image super-resolution network (USISResNet) for real-world data using generative adversarial network[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1904-1913. |
[47] | ZHANG K, LIANG J Y, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 4771-4780. |
[48] | 方玉明, 眭相杰, 鄢杰斌, 等. 无参考图像质量评价研究进展[J]. 中国图象图形学报, 2021, 26(2): 265-286. |
FANG Y M, SUI X J, YAN J B, et al. Progress in no-reference image quality assessment[J]. Journal of Image and Graphics, 2021, 26(2): 265-286 (in Chinese). | |
[49] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
DOI PMID |
[50] | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[EB/OL]. [2022-02-05]. https://ieeexplore.ieee.org/abstract/document/7797130. |
[51] | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 586-595. |
[52] | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1122-1131. |
[53] |
MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838.
DOI URL |
[54] | CAI J R, ZENG H, YONG H W, et al. Toward real-world single image super-resolution: a new benchmark and a new model[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3086-3095. |
[55] | PAN Z H, LI B P, XI T, et al. Real image super resolution via heterogeneous model ensemble using GP-NAS[EB/OL]. [2022-02-05]. https://arxiv.org/abs/2009.01371. |
[56] | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1637-1645. |
[57] | MUQEET A, HWANG J, YANG S B, et al. Multi-attention based ultra lightweight image super-resolution[M]//Computer Vision - ECCV 2020 Workshops. Cham: Springer International Publishing, 2020: 103-118. |
[58] | ZHOU S C, ZHANG J W, ZUO W M, et al. Cross-scale internal graph neural network for image super- resolution[EB/OL]. [2022-02-05].https://arxiv.org/abs/2006.16673. |
[1] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[2] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. |
[3] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. |
[4] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[5] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[6] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[7] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[8] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[9] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. |
[10] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[11] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[12] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[13] | ZENG Wu, ZHU Heng-liang, XING Shu-li, LIN Jiang-hong, MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. |
[14] | LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net [J]. Journal of Graphics, 2023, 44(2): 304-312. |
[15] | SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua. A sketch-guided facial image completion network via selective recurrent inference [J]. Journal of Graphics, 2023, 44(1): 67-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||