Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 67-76.DOI: 10.11996/JG.j.2095-302X.2023010067
• Image Processing and Computer Vision • Previous Articles Next Articles
SHAO Ying-jie1,2(), YIN Hui1,2(
), XIE Ying1,2, HUANG Hua1,2
Received:
2022-06-19
Revised:
2022-07-20
Online:
2023-10-31
Published:
2023-02-16
Contact:
YIN Hui
About author:
SHAO Ying-jie (1998-), master student. His main research interests cover computer vision and deep learning. E-mail:906612726@qq.com
Supported by:
CLC Number:
SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua. A sketch-guided facial image completion network via selective recurrent inference[J]. Journal of Graphics, 2023, 44(1): 67-76.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010067
评价指标 | λperc | |||
---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | |
PSNR | 31.474 5 | 31.739 9 | 31.553 4 | 31.320 7 |
Table 1 Experimental results with different values of λperc
评价指标 | λperc | |||
---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | |
PSNR | 31.474 5 | 31.739 9 | 31.553 4 | 31.320 7 |
评价指标 | 模型 | 掩码比例 | |||
---|---|---|---|---|---|
10%~20% | 21%~30% | 31%~40% | 41%~50% | ||
PSNR | RFR[ | 33.177 1 | 29.839 6 | 27.537 7 | 25.683 5 |
Gated Conv[ | 32.624 1 | 29.623 7 | 27.602 4 | 25.953 2 | |
Sc-fegan[ | 34.174 2 | 30.804 2 | 28.359 0 | 26.268 2 | |
SG-FICNet (本文) | 34.811 3 | 31.739 9 | 29.668 5 | 28.033 3 | |
SSIM | RFR[ | 0.959 2 | 0.925 7 | 0.890 1 | 0.851 2 |
Gated Conv[ | 0.952 7 | 0.919 1 | 0.885 5 | 0.849 8 | |
Sc-fegan[ | 0.962 0 | 0.932 4 | 0.900 0 | 0.863 6 | |
SG-FICNet (本文) | 0.965 1 | 0.937 4 | 0.908 8 | 0.878 2 | |
FID | RFR[ | 1.132 8 | 2.116 4 | 3.331 0 | 4.788 7 |
Gated Conv[ | 3.092 6 | 6.009 8 | 9.482 2 | 13.271 7 | |
Sc-fegan[ | 1.216 2 | 2.185 6 | 3.480 6 | 5.144 3 | |
SG-FICNet (本文) | 0.880 8 | 1.569 0 | 2.407 2 | 3.358 5 |
Table 2 Comparing with different mask ratios on the CelebA-HQ dataset
评价指标 | 模型 | 掩码比例 | |||
---|---|---|---|---|---|
10%~20% | 21%~30% | 31%~40% | 41%~50% | ||
PSNR | RFR[ | 33.177 1 | 29.839 6 | 27.537 7 | 25.683 5 |
Gated Conv[ | 32.624 1 | 29.623 7 | 27.602 4 | 25.953 2 | |
Sc-fegan[ | 34.174 2 | 30.804 2 | 28.359 0 | 26.268 2 | |
SG-FICNet (本文) | 34.811 3 | 31.739 9 | 29.668 5 | 28.033 3 | |
SSIM | RFR[ | 0.959 2 | 0.925 7 | 0.890 1 | 0.851 2 |
Gated Conv[ | 0.952 7 | 0.919 1 | 0.885 5 | 0.849 8 | |
Sc-fegan[ | 0.962 0 | 0.932 4 | 0.900 0 | 0.863 6 | |
SG-FICNet (本文) | 0.965 1 | 0.937 4 | 0.908 8 | 0.878 2 | |
FID | RFR[ | 1.132 8 | 2.116 4 | 3.331 0 | 4.788 7 |
Gated Conv[ | 3.092 6 | 6.009 8 | 9.482 2 | 13.271 7 | |
Sc-fegan[ | 1.216 2 | 2.185 6 | 3.480 6 | 5.144 3 | |
SG-FICNet (本文) | 0.880 8 | 1.569 0 | 2.407 2 | 3.358 5 |
模型 | PSNR | SSIM |
---|---|---|
RFR[ | 26.453 2 | 0.900 6 |
MS-CAHRBN[ | 26.755 2 | 0.895 1 |
SG-FICNet(无SG-SIC) | 26.535 3 | 0.902 2 |
SG-FICNet(本文) | 29.327 9 | 0.930 0 |
Table 3 Repair contrast on square center mask
模型 | PSNR | SSIM |
---|---|---|
RFR[ | 26.453 2 | 0.900 6 |
MS-CAHRBN[ | 26.755 2 | 0.895 1 |
SG-FICNet(无SG-SIC) | 26.535 3 | 0.902 2 |
SG-FICNet(本文) | 29.327 9 | 0.930 0 |
Fig. 4 Comparison of facial image inpainting results of sketches generated by different models in HED ((a) Ground truth; (b) Input; (c) Sketch; (d) RFR[7]; (e) Gated Conv[14]; (f) Sc-fegan[12]; (g) SG-FICNet)
Fig. 5 Comparison of facial image inpainting results of different models in artificial hand-painted sketches ((a) Ground truth; (b) Input; (c) Sketch; (d) Gated Conv[14]; (e) Sc-fegan[12]; (f) SG-FICNet)
模型 | PSNR | SSIM | FID |
---|---|---|---|
基础网络 | 29.839 6 | 0.925 7 | 2.116 4 |
基础网络+SRI | 29.941 9 | 0.926 3 | 2.013 3 |
基础网络+SG-SIC | 31.683 6 | 0.936 7 | 1.676 0 |
Table 4 Ablation experiments of SRI and SG-SIC on CelebA-HQ dataset
模型 | PSNR | SSIM | FID |
---|---|---|---|
基础网络 | 29.839 6 | 0.925 7 | 2.116 4 |
基础网络+SRI | 29.941 9 | 0.926 3 | 2.013 3 |
基础网络+SG-SIC | 31.683 6 | 0.936 7 | 1.676 0 |
Fig. 6 Different threshold sketches and repair results ((a) Ground truth; (b) Input; (c) Sketch threshold setting 0.1; (d) Result of sketch threshold setting 0.1; (e) Sketch threshold setting 0.8; (f) Result of sketch threshold setting 0.8)
[1] | 林毓秀, 刘慧, 刘绍玲, 等. 三维CT层间图像超分辨重建与修复[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 919-929. |
LIN Y X, LIU H, LIU S L, et al. Super-resolution reconstruction and inpainting of inter-layer image in 3D CT[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 919-929 (in Chinese). | |
[2] | 杨筱平, 王书文. 基于优先权改进算法的敦煌壁画复杂破损区域修复[J]. 计算机辅助设计与图形学学报, 2011, 23(2): 284-289. |
YANG X P, WANG S W. Dunhuang mural inpainting in intricate disrepaired region based on improvement of priority algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(2): 284-289 (in Chinese). | |
[3] | 强振平, 何丽波, 陈旭, 等. 深度学习图像修复方法综述[J]. 中国图象图形学报, 2019, 24(3): 447-463. |
QIANG Z P, HE L B, CHEN X, et al. Survey on deep learning image inpainting methods[J]. Journal of Image and Graphics, 2019, 24(3): 447-463 (in Chinese). | |
[4] | BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]//The 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2000: 417-424. |
[5] | CHAN T, SHEN J. Mathematical models for local deterministic inpaintings[R]. Los Angeles: University of California. Department of Mathematics, 2000. |
[6] | PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2536-2544. |
[7] | LI J, WANG N, ZHANG L, et al. Recurrent feature reasoning for image inpainting[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7760-7768. |
[8] | 杨昊, 余映. 利用通道注意力与分层残差网络的图像修复[J]. 计算机辅助设计与图形学学报, 2021, 33(5): 671-681. |
YANG H, YU Y. Image inpainting using channel attention and hierarchical residual networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(5): 671-681 (in Chinese). | |
[9] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg:Springer, 2015: 234-241. |
[10] | YAN Z, LI X, LI M, et al. Shift-net: image inpainting via deep feature rearrangement[C]//The European Conference on Computer Vision. Cham: Springer International Publishin, 2018: 3-19. |
[11] | WANG Y, TAO X, QI X J, et al. Image inpainting via generative multi-column convolutional neural networks[C]// The Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2018: 329-338. |
[12] | JO Y, PARK J. Sc-fegan: face editing generative adversarial network with user's sketch and color[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1745-1753. |
[13] | PORTENIER T, HU Q, SZABO A, et al. Faceshop: deep sketch-based face image editing[EB/OL]. [2021-12-09]. https://arxiv.org/pdf/1804.08972.pdf. |
[14] | YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 4471-4480. |
[15] | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. |
[16] | YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 5505-5514. |
[17] | LIU G, FA R D, SHIH K, et al. Image inpainting for irregular holes using partial convolutions[C]// The European Conference on Computer Vision. Cham: Springer International Publishin, 2018: 85-100. |
[18] | LIU H, WAN Z, HUANG W, et al. Pd-Gan: Probabilistic diverse Gan for image inpainting[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9371-9381. |
[19] | 温静, 丁友东, 于冰. 基于上下文门卷积的盲图像修复[J]. 图学学报, 2022, 43(1): 70-78. |
WEN J, DING Y D, YU B. Blind image inpainting based on context gated convolution[J]. Journal of Graphics, 2022, 43(1): 70-78 (in Chinese). | |
[20] | XIONG W, YU J, LIN Z, et al. Foreground-aware image inpainting[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5840-5848. |
[21] | LI J, HE F, ZHANG L, et al. Progressive reconstruction of visual structure for image inpainting[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5962-5971. |
[22] | GUO Z, CHEN Z, YU T, et al. Progressive image inpainting with full-resolution residual network[C]// The 27th ACM International Conference on Multimedia. New York: ACM, 2019: 2496-2504. |
[23] | OH S W, LEE S, LEE J Y, et al. Onion-peel networks for deep video completion[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 4403-4412. |
[24] | NAZERI K, NG E, JOSEPH T, et al. Edgeconnect: Generative image inpainting with adversarial edge learning[EB/OL]. [2021-12-09].https://arxiv.org/pdf/1901.00212v3.pdf. |
[25] | XIE S, TU Z. Holistically-nested edge detection[C]//2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1395-1403. |
[26] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-12-09].https://arxiv.org/pdf/1409.1556.pdf. |
[27] | KARRAS T, AILA T, LAINE S, et al. Progressive growing of gans for improved quality, stability, and variation[EB/OL]. [2021-12-09].https://arxiv.org/pdf/1710.10196.pdf%C2%A0. |
[28] | DIEDERIK P K, ADAM J. A method for stochastic optimization[EB/OL]. [2021-12-09]. https://arxiv.org/pdf/1412.6980.pdf. |
[1] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[2] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. |
[3] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. |
[4] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[5] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[6] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[7] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[8] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[9] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. |
[10] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[11] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[12] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[13] | ZENG Wu, ZHU Heng-liang, XING Shu-li, LIN Jiang-hong, MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. |
[14] | LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net [J]. Journal of Graphics, 2023, 44(2): 304-312. |
[15] | LI Hong-an, ZHENG Qiao-xue, TAO Ruo-lin, ZHANG Min, LI Zhan-li, KANG Bao-sheng. Review of image super-resolutionbased on deep learning [J]. Journal of Graphics, 2023, 44(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||