[1] |
TANG W J, CHEN H G. Research on intelligent substation monitoring by image recognition method[J]. International Journal of Emerging Electric Power Systems, 2021, 22(1): 1-7.
DOI
URL
|
[2] |
赵书涛, 李宝树, 崔桂彦, 等. 基于计算机视觉的远程变电站状态监测与诊断新策略[J]. 电网技术, 2005, 29(6): 63-66.
|
|
ZHAO S T, LI B S, CUI G Y, et al. Remote state monitoringand diagnosis of substation based on computer vision[J]. Power System Technology, 2005, 29(6): 63-66. (in Chinese)
|
[3] |
李大伟, 贾鹏飞, 李卫国, 等. 一种基于卡尔曼滤波与模糊算法的变电站机器人组合导航及控制系统设计[J]. 智能系统学报, 2013, 8(3): 226-232.
|
|
LI D W, JIA P F, LI W G, et al. A kind of integrated navigation and control system design for substation robot based on the Kalman filtering and fuzzy algorithm[J]. CAAI Transactions on Intelligent Systems, 2013, 8(3): 226-232. (in Chinese)
|
[4] |
马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148-1159.
|
|
MA P, FAN Y F. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148-1159. (in Chinese)
|
[5] |
SHU Y, YIN H R, RAJABI M, et al. RNA-based micelles: a novel platform for paclitaxel loading and delivery[J]. Journal of Controlled Release, 2018, 276: 17-29.
DOI
URL
|
[6] |
毛爱坤, 刘昕明, 陈文壮, 等. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455.
DOI
|
|
MAO A K, LIU X M, CHEN W Z, et al. Improved substation instrument target detection method for YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(3): 448-455. (in Chinese)
|
[7] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002.
|
[8] |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[EB/OL]. [2023-01-20]. https://arxiv.org/abs/1807.11164.
|
[9] |
范新南, 黄伟盛, 史朋飞, 等. 基于改进YOLOv4的嵌入式变电站仪表检测算法[J]. 图学学报, 2022, 43(3): 396-403.
|
|
FAN X N, HUANG W S, SHI P F, et al. Embedded substation instrument detection algorithm based on improved YOLOv4[J]. Journal of Graphics, 2022, 43(3): 396-403. (in Chinese)
|
[10] |
齐冬莲, 韩译锋, 周自强, 等. 基于视频图像的输变电设备外部缺陷检测技术及其应用现状[J]. 电子与信息学报, 2022, 44(11): 3709-3720.
|
|
QI D L, HAN Y F, ZHOU Z Q, et al. Review of defect detection technology of power equipment based on video images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. (in Chinese)
|
[11] |
CUI Y, HUANG X, ZHANG X, et al. A defects detection system for substation based on YOLOX[C]// The 5th International Electrical and Energy Conference. New York: IEEE Press, 2022: 4703-4707.
|
[12] |
LV S G, LIU K, QIAO Y H, et al. Automatic defect detection based on improved Faster RCNN for substation equipment[J]. Journal of Physics: Conference Series, 2020, 1544(1): 12157.
DOI
|
[13] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI
PMID
|
[14] |
YING Y, WANG Y Z, YAN Y F, et al. An improved defect detection method for substation equipment[C]// The 39th Chinese Control Conference. New York: IEEE Press, 2020: 6318-6323.
|
[15] |
WANG J, ZHANG Q W. Visual defect detection for substation equipment based on joint inspection data of camera and robot[C]// The 5th Information Technology and Mechatronics Engineering Conference. New York: IEEE Press, 2020: 491-495.
|
[16] |
CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2020: 1971-1980.
|
[17] |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2023-01-20]. https://arxiv.org/abs/2205.12740.
|
[18] |
CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13034-13043.
|
[19] |
LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-01-20]. https://arxiv.org/abs/2209.02976.
|
[20] |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-01-20]. https://arxiv.org/abs/2107.08430.
|
[21] |
JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[EB/OL]. [2023-01-20]. https://arxiv.org/abs/2011.00362.
|
[22] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007.
|
[23] |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
DOI
|
|
LUO H L, CHEN H K. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239. (in Chinese)
|