Journal of Graphics ›› 2023, Vol. 44 ›› Issue (4): 677-690.DOI: 10.11996/JG.j.2095-302X.2023040677
• Image Processing and Computer Vision • Previous Articles Next Articles
CAO Yi-qin1(), ZHOU Yi-wei1, XU Lu2
Received:
2022-12-30
Accepted:
2023-03-27
Online:
2023-08-31
Published:
2023-08-16
About author:
First author contact:CAO Yi-qin (1964-), professor, master. His main research interests cover digital image processing and pattern recognition.
E-mail:yqcao@ecjtu.edu.cn
Supported by:
CLC Number:
CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX[J]. Journal of Graphics, 2023, 44(4): 677-690.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023040677
Fig. 4 Aluminum profile surface defect dataset AL6-DET ((a) Non-conductive; (b) Orange peel; (c) Corner leakage; (d) Leakage; (e) Pitting; (f) Mottling)
Fig. 6 Steel surface defect dataset GC10-DET ((a) Waist folding; (b) Crescent gap; (c) Oil spot; (d) Inclusion; (e) Rolled pit; (f) Welding line; (g) Water spot; (h) Silk spot; (i) Crease; (j) Punching)
算法 | 特征提取网络 | 训练大小 | AL6-DET | GC10-DET | 参数量(M) | 计算量(G) | FPS |
---|---|---|---|---|---|---|---|
Sparse RCNN | ResNet50 | 640 | 72.2 | 33.7 | 105.9 | 64.6 | 25 |
SSD | VGG16 | 512 | 67.5 | 31.4 | 24.4 | 88.4 | 38 |
ATSS | ResNet50 | 640 | 67.9 | 33.1 | 31.9 | 80.6 | 35 |
TOOD | ResNet50 | 640 | 68.8 | 31.5 | 31.8 | 72.3 | 32 |
Varifocal Net | ResNet50 | 640 | 67.9 | 32.6 | 32.5 | 75.7 | 31 |
YOLOv3 | DarkNet53 | 608 | 67.2 | 30.7 | 61.6 | 70.0 | 39 |
YOLOv5-s | CSPDarkNet | 640 | 72.1 | 33.5 | 7.0 | 15.8 | 62 |
YOLOv5-m | CSPDarkNet | 640 | 73.8 | 33.7 | 20.9 | 47.9 | 51 |
YOLOv5-l | CSPDarkNet | 640 | 75.5 | 34.3 | 46.2 | 108.4 | 43 |
YOLOX-s | CSPDarkNet | 640 | 71.3 | 33.2 | 8.9 | 26.8 | 53 |
YOLOX-m | CSPDarkNet | 640 | 72.5 | 33.9 | 25.3 | 73.8 | 42 |
YOLOX-l | CSPDarkNet | 640 | 73.6 | 35.1 | 54.2 | 155.6 | 36 |
YOLOv7-tiny | E-ELAN | 640 | 70.4 | 32.2 | 6.0 | 13.3 | 71 |
YOLOv7 | E-ELAN | 640 | 75.2 | 34.8 | 37.2 | 105.3 | 54 |
E-YOLOX-s | ECMNet | 640 | 74.7 | 34.5 | 5.9 | 18.9 | 70 |
E-YOLOX-m | ECMNet | 640 | 75.9 | 35.3 | 13.6 | 44.6 | 61 |
E-YOLOX-l | ECMNet | 640 | 77.2 | 36.8 | 24.3 | 79.0 | 57 |
Table 1 Detection results of different algorithms (mAP50:95)
算法 | 特征提取网络 | 训练大小 | AL6-DET | GC10-DET | 参数量(M) | 计算量(G) | FPS |
---|---|---|---|---|---|---|---|
Sparse RCNN | ResNet50 | 640 | 72.2 | 33.7 | 105.9 | 64.6 | 25 |
SSD | VGG16 | 512 | 67.5 | 31.4 | 24.4 | 88.4 | 38 |
ATSS | ResNet50 | 640 | 67.9 | 33.1 | 31.9 | 80.6 | 35 |
TOOD | ResNet50 | 640 | 68.8 | 31.5 | 31.8 | 72.3 | 32 |
Varifocal Net | ResNet50 | 640 | 67.9 | 32.6 | 32.5 | 75.7 | 31 |
YOLOv3 | DarkNet53 | 608 | 67.2 | 30.7 | 61.6 | 70.0 | 39 |
YOLOv5-s | CSPDarkNet | 640 | 72.1 | 33.5 | 7.0 | 15.8 | 62 |
YOLOv5-m | CSPDarkNet | 640 | 73.8 | 33.7 | 20.9 | 47.9 | 51 |
YOLOv5-l | CSPDarkNet | 640 | 75.5 | 34.3 | 46.2 | 108.4 | 43 |
YOLOX-s | CSPDarkNet | 640 | 71.3 | 33.2 | 8.9 | 26.8 | 53 |
YOLOX-m | CSPDarkNet | 640 | 72.5 | 33.9 | 25.3 | 73.8 | 42 |
YOLOX-l | CSPDarkNet | 640 | 73.6 | 35.1 | 54.2 | 155.6 | 36 |
YOLOv7-tiny | E-ELAN | 640 | 70.4 | 32.2 | 6.0 | 13.3 | 71 |
YOLOv7 | E-ELAN | 640 | 75.2 | 34.8 | 37.2 | 105.3 | 54 |
E-YOLOX-s | ECMNet | 640 | 74.7 | 34.5 | 5.9 | 18.9 | 70 |
E-YOLOX-m | ECMNet | 640 | 75.9 | 35.3 | 13.6 | 44.6 | 61 |
E-YOLOX-l | ECMNet | 640 | 77.2 | 36.8 | 24.3 | 79.0 | 57 |
算法 | mAP50 | 不导电 | 桔皮 | 角位漏底 | 漏底 | 起坑 | 杂色 |
---|---|---|---|---|---|---|---|
Sparse RCNN | 88.7 | 59.7 | 100 | 85.4 | 86.8 | 100 | 100 |
SSD | 91.7 | 72.7 | 100 | 88.7 | 89.7 | 99.1 | 100 |
ATSS | 89.5 | 63.5 | 99.8 | 90.5 | 87.1 | 96.2 | 100 |
TOOD | 89.2 | 60.9 | 100 | 92.9 | 85.4 | 97.7 | 98.4 |
Varifocal Net | 88.6 | 65.8 | 99.9 | 89.3 | 84.8 | 93.9 | 97.8 |
YOLOv3 | 90.6 | 70.5 | 100 | 93.5 | 82.0 | 97.8 | 100 |
YOLOv5-s | 91.0 | 62.4 | 100 | 93.8 | 89.8 | 100 | 100 |
YOLOv5-m | 91.5 | 67.0 | 98.9 | 92.5 | 90.8 | 100 | 100 |
YOLOv5-l | 92.2 | 67.4 | 100 | 94.5 | 91.2 | 100 | 100 |
YOLOX-s | 90.2 | 65.1 | 100 | 85.7 | 91.1 | 99.5 | 100 |
YOLOX-m | 91.3 | 66.6 | 100 | 93.4 | 87.9 | 100 | 100 |
YOLOX-l | 91.6 | 67.7 | 100 | 92.6 | 89.3 | 100 | 100 |
YOLOv7-tiny | 91.1 | 66.8 | 99.4 | 90.6 | 90.1 | 99.6 | 100 |
YOLOv7 | 92.5 | 69.7 | 100 | 93.7 | 91.6 | 100 | 100 |
E-YOLOX-s | 92.3 | 74.6 | 99.8 | 91.4 | 87.7 | 100 | 100 |
E-YOLOX-m | 92.6 | 77.0 | 98.5 | 92.0 | 88.3 | 100 | 100 |
E-YOLOX-l | 93.4 | 77.6 | 100 | 92.4 | 90.6 | 100 | 100 |
Table 2 Detection results of different algorithms on AL6-DET (%)
算法 | mAP50 | 不导电 | 桔皮 | 角位漏底 | 漏底 | 起坑 | 杂色 |
---|---|---|---|---|---|---|---|
Sparse RCNN | 88.7 | 59.7 | 100 | 85.4 | 86.8 | 100 | 100 |
SSD | 91.7 | 72.7 | 100 | 88.7 | 89.7 | 99.1 | 100 |
ATSS | 89.5 | 63.5 | 99.8 | 90.5 | 87.1 | 96.2 | 100 |
TOOD | 89.2 | 60.9 | 100 | 92.9 | 85.4 | 97.7 | 98.4 |
Varifocal Net | 88.6 | 65.8 | 99.9 | 89.3 | 84.8 | 93.9 | 97.8 |
YOLOv3 | 90.6 | 70.5 | 100 | 93.5 | 82.0 | 97.8 | 100 |
YOLOv5-s | 91.0 | 62.4 | 100 | 93.8 | 89.8 | 100 | 100 |
YOLOv5-m | 91.5 | 67.0 | 98.9 | 92.5 | 90.8 | 100 | 100 |
YOLOv5-l | 92.2 | 67.4 | 100 | 94.5 | 91.2 | 100 | 100 |
YOLOX-s | 90.2 | 65.1 | 100 | 85.7 | 91.1 | 99.5 | 100 |
YOLOX-m | 91.3 | 66.6 | 100 | 93.4 | 87.9 | 100 | 100 |
YOLOX-l | 91.6 | 67.7 | 100 | 92.6 | 89.3 | 100 | 100 |
YOLOv7-tiny | 91.1 | 66.8 | 99.4 | 90.6 | 90.1 | 99.6 | 100 |
YOLOv7 | 92.5 | 69.7 | 100 | 93.7 | 91.6 | 100 | 100 |
E-YOLOX-s | 92.3 | 74.6 | 99.8 | 91.4 | 87.7 | 100 | 100 |
E-YOLOX-m | 92.6 | 77.0 | 98.5 | 92.0 | 88.3 | 100 | 100 |
E-YOLOX-l | 93.4 | 77.6 | 100 | 92.4 | 90.6 | 100 | 100 |
算法 | mAP50 | 冲孔 | 焊缝 | 月间隙 | 水斑 | 油斑 | 丝状斑 | 夹杂 | 压痕 | 折痕 | 腰折 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sparse RCNN | 65.2 | 95.7 | 93.9 | 95.4 | 78.1 | 70.0 | 62.4 | 27.3 | 31.5 | 23.1 | 74.9 |
SSD | 64.7 | 96.5 | 93.8 | 93.8 | 76.2 | 68.8 | 61.2 | 16.9 | 29.2 | 31.4 | 78.8 |
ATSS | 67.7 | 91.8 | 86.4 | 96.5 | 79.6 | 73.7 | 67.6 | 28.1 | 47.3 | 20.5 | 85.7 |
TOOD | 65.2 | 90.2 | 90.6 | 91.9 | 81.5 | 78.0 | 60.5 | 28.3 | 47.8 | 7.3 | 75.9 |
Varifocal Net | 64.5 | 88.5 | 95.4 | 94.3 | 82.5 | 79.5 | 66.8 | 23.2 | 26.0 | 3.2 | 85.5 |
YOLOv3 | 65.6 | 93.3 | 91.0 | 98.0 | 77.4 | 70.1 | 62.6 | 38.4 | 36.3 | 26.2 | 62.4 |
YOLOv5-s | 68.5 | 96.1 | 94.0 | 96.0 | 82.8 | 80.3 | 68.5 | 32.3 | 31.3 | 23.6 | 80.2 |
YOLOv5-m | 69.3 | 97.2 | 95.4 | 96.6 | 76.9 | 76.0 | 68.2 | 33.6 | 28.3 | 33.5 | 86.9 |
YOLOv5-l | 71.4 | 96.8 | 96.0 | 96.9 | 79.3 | 82.4 | 69.9 | 30.6 | 37.6 | 36.7 | 88.2 |
YOLOX-s | 67.5 | 97.0 | 95.3 | 96.3 | 78.1 | 76.2 | 64.2 | 30.0 | 31.0 | 17.2 | 90.0 |
YOLOX-m | 69.0 | 96.1 | 95.4 | 95.5 | 78.9 | 79.5 | 66.7 | 25.8 | 32.3 | 28.4 | 91.1 |
YOLOX-l | 69.5 | 95.1 | 94.8 | 94.2 | 77.5 | 81.7 | 65.4 | 21.2 | 32.2 | 39.9 | 93.0 |
YOLOv7-tiny | 66.5 | 96.4 | 80.9 | 97.5 | 82.3 | 74.7 | 68 | 30.3 | 23.8 | 30.2 | 80.8 |
YOLOv7 | 67.7 | 96.2 | 84.3 | 96.4 | 83.7 | 77.0 | 66.8 | 29.5 | 16.2 | 44.3 | 82.3 |
EDDN | 65.2 | 90.0 | 88.5 | 84.8 | 55.8 | 62.2 | 65.0 | 25.6 | 36.4 | 52.1 | 91.9 |
E-YOLOX-s | 68.3 | 97.3 | 93.3 | 96.4 | 79.5 | 78.2 | 67.0 | 33.3 | 31.4 | 18.4 | 88.5 |
E-YOLOX-m | 70.4 | 97.0 | 94.6 | 96.9 | 78.4 | 79.6 | 68.8 | 24.8 | 36.4 | 35.2 | 92.3 |
E-YOLOX-l | 73.3 | 97.2 | 95.7 | 98.7 | 80.5 | 76.5 | 67.3 | 32.1 | 48.2 | 41.7 | 94.6 |
Table 3 Detection results of different algorithms on GC10-DET (%)
算法 | mAP50 | 冲孔 | 焊缝 | 月间隙 | 水斑 | 油斑 | 丝状斑 | 夹杂 | 压痕 | 折痕 | 腰折 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sparse RCNN | 65.2 | 95.7 | 93.9 | 95.4 | 78.1 | 70.0 | 62.4 | 27.3 | 31.5 | 23.1 | 74.9 |
SSD | 64.7 | 96.5 | 93.8 | 93.8 | 76.2 | 68.8 | 61.2 | 16.9 | 29.2 | 31.4 | 78.8 |
ATSS | 67.7 | 91.8 | 86.4 | 96.5 | 79.6 | 73.7 | 67.6 | 28.1 | 47.3 | 20.5 | 85.7 |
TOOD | 65.2 | 90.2 | 90.6 | 91.9 | 81.5 | 78.0 | 60.5 | 28.3 | 47.8 | 7.3 | 75.9 |
Varifocal Net | 64.5 | 88.5 | 95.4 | 94.3 | 82.5 | 79.5 | 66.8 | 23.2 | 26.0 | 3.2 | 85.5 |
YOLOv3 | 65.6 | 93.3 | 91.0 | 98.0 | 77.4 | 70.1 | 62.6 | 38.4 | 36.3 | 26.2 | 62.4 |
YOLOv5-s | 68.5 | 96.1 | 94.0 | 96.0 | 82.8 | 80.3 | 68.5 | 32.3 | 31.3 | 23.6 | 80.2 |
YOLOv5-m | 69.3 | 97.2 | 95.4 | 96.6 | 76.9 | 76.0 | 68.2 | 33.6 | 28.3 | 33.5 | 86.9 |
YOLOv5-l | 71.4 | 96.8 | 96.0 | 96.9 | 79.3 | 82.4 | 69.9 | 30.6 | 37.6 | 36.7 | 88.2 |
YOLOX-s | 67.5 | 97.0 | 95.3 | 96.3 | 78.1 | 76.2 | 64.2 | 30.0 | 31.0 | 17.2 | 90.0 |
YOLOX-m | 69.0 | 96.1 | 95.4 | 95.5 | 78.9 | 79.5 | 66.7 | 25.8 | 32.3 | 28.4 | 91.1 |
YOLOX-l | 69.5 | 95.1 | 94.8 | 94.2 | 77.5 | 81.7 | 65.4 | 21.2 | 32.2 | 39.9 | 93.0 |
YOLOv7-tiny | 66.5 | 96.4 | 80.9 | 97.5 | 82.3 | 74.7 | 68 | 30.3 | 23.8 | 30.2 | 80.8 |
YOLOv7 | 67.7 | 96.2 | 84.3 | 96.4 | 83.7 | 77.0 | 66.8 | 29.5 | 16.2 | 44.3 | 82.3 |
EDDN | 65.2 | 90.0 | 88.5 | 84.8 | 55.8 | 62.2 | 65.0 | 25.6 | 36.4 | 52.1 | 91.9 |
E-YOLOX-s | 68.3 | 97.3 | 93.3 | 96.4 | 79.5 | 78.2 | 67.0 | 33.3 | 31.4 | 18.4 | 88.5 |
E-YOLOX-m | 70.4 | 97.0 | 94.6 | 96.9 | 78.4 | 79.6 | 68.8 | 24.8 | 36.4 | 35.2 | 92.3 |
E-YOLOX-l | 73.3 | 97.2 | 95.7 | 98.7 | 80.5 | 76.5 | 67.3 | 32.1 | 48.2 | 41.7 | 94.6 |
算法 | mAP (%) | mAP50 (%) | FPS |
---|---|---|---|
YOLOX-s | 52.3 | 82.1 | 53 |
E-YOLOX-s | 54.4 | 84.8 | 70 |
YOLOX-m | 59.2 | 88.7 | 42 |
E-YOLOX-m | 61.0 | 90.1 | 61 |
YOLOX-l | 64.5 | 93.7 | 36 |
E-YOLOX-l | 65.3 | 94.9 | 57 |
Table 4 The experiment results of proposed algorithm and baseline algorithm on PASCAL VOC 2012
算法 | mAP (%) | mAP50 (%) | FPS |
---|---|---|---|
YOLOX-s | 52.3 | 82.1 | 53 |
E-YOLOX-s | 54.4 | 84.8 | 70 |
YOLOX-m | 59.2 | 88.7 | 42 |
E-YOLOX-m | 61.0 | 90.1 | 61 |
YOLOX-l | 64.5 | 93.7 | 36 |
E-YOLOX-l | 65.3 | 94.9 | 57 |
方法 | mAP | 参数量(M) | 计算量(G) | FPS |
---|---|---|---|---|
基准模型YOLOX-l | 73.6 | 54.2 | 155.6 | 36 |
+深度卷积 | 73.1(-0.5) | 42.8 | 105.8 | 49 |
+逆瓶颈结构的残差网络 | 74.6(+1.5) | 45.1 | 121.3 | 46 |
+减少激活函数 | 75.0(+0.4) | 45.1 | 121.3 | 47 |
+扩张跨阶段局部网络 | 76.3(+1.3) | 24.3 | 79.0 | 57 |
+边缘Cutout数据增强方法 | 77.2(+0.9) | 24.3 | 79.0 | 57 |
Table 5 Improvement of E-YOLOX-l algorithm on AL6-DET
方法 | mAP | 参数量(M) | 计算量(G) | FPS |
---|---|---|---|---|
基准模型YOLOX-l | 73.6 | 54.2 | 155.6 | 36 |
+深度卷积 | 73.1(-0.5) | 42.8 | 105.8 | 49 |
+逆瓶颈结构的残差网络 | 74.6(+1.5) | 45.1 | 121.3 | 46 |
+减少激活函数 | 75.0(+0.4) | 45.1 | 121.3 | 47 |
+扩张跨阶段局部网络 | 76.3(+1.3) | 24.3 | 79.0 | 57 |
+边缘Cutout数据增强方法 | 77.2(+0.9) | 24.3 | 79.0 | 57 |
方法 | AL6-DET | GC10-DET |
---|---|---|
E-YOLOX | 76.3 | 35.1 |
+ Cutout | 76.1(-0.2) | 35.4(+0.3) |
+ 边缘Cutout | 77.2(+0.9) | 35.5(+0.4) |
Table 6 Cutout vs edge Cutout (mAP)
方法 | AL6-DET | GC10-DET |
---|---|---|
E-YOLOX | 76.3 | 35.1 |
+ Cutout | 76.1(-0.2) | 35.4(+0.3) |
+ 边缘Cutout | 77.2(+0.9) | 35.5(+0.4) |
[1] | LIU W W, YAN Y H, LI J, et al. Automated on-line fast detection for surface defect of steel strip based on multivariate discriminant function[C]// 2008 Second International Symposium on Intelligent Information Technology Application. New York: IEEE Press, 2009: 493-497. |
[2] |
LUO Q W, SUN Y C, LI P C, et al. Generalized completed local binary patterns for time-efficient steel surface defect classification[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(3): 667-679.
DOI URL |
[3] | CALEB P, STEUER M. Classification of surface defects on hot rolled steel using adaptive learning methods[C]// KES’2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516). New York: IEEE Press, 2002: 103-108. |
[4] |
ASHOUR M W, KHALID F, HALIN A A, et al. Surface defects classification of hot-rolled steel strips using multi-directional shearlet features[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 2925-2932.
DOI |
[5] | AI Y H, XU K. Surface detection of continuous casting slabs based on curvelet transform and kernel locality preserving projections[J]. Journal of Iron and Steel Research, International, 2013, 20(5): 80-86. |
[6] |
MEDINA R, GAYUBO F, GONZÁLEZ-RODRIGO L M, et al. Automated visual classification of frequent defects in flat steel coils[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(9): 1087-1097.
DOI URL |
[7] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[8] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 1440-1448. |
[9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[10] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[11] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[12] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[13] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-06-04]. https://arxiv.org/abs/1804.02767. |
[14] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-06-04]. https://arxiv.org/abs/2004.10934. |
[15] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13024-13033. |
[16] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2020-08-06) [2022-06-04]. https://arxiv.org/abs/2107.08430. |
[17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37. |
[18] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 9626-9635. |
[19] | ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9756-9765. |
[20] | 黄凤荣, 李杨, 郭兰申, 等. 基于Faster R-CNN的零件表面缺陷检测算法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 883-893. |
HUANG F R, LI Y, GUO L S, et al. Method for detecting surface defects of engine parts based on faster R-CNN[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 883-893 (in Chinese). | |
[21] |
于海涛, 李健升, 刘亚姣, 等. 基于级联神经网络的型钢表面缺陷检测算法[J]. 计算机应用, 2023, 43(1): 232-241.
DOI |
YU H T, LI J S, LIU Y J, et al. Detection algorithm of surface defects of section steel based on cascade neural network[J]. Journal of Computer Applications, 2023, 43(1): 232-241 (in Chinese). | |
[22] |
MA Z X, LI Y B, HUANG M H, et al. A lightweight detector based on attention mechanism for aluminum strip surface defect detection[J]. Computers in Industry, 2022, 136: 103585.
DOI URL |
[23] | GUO Z X, WANG C S, YANG G, et al. MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface[J]. Sensors: Basel, Switzerland, 2022, 22(9): 3467. |
[24] |
孙琪翔, 何宁, 张敬尊, 等. 基于非局部高分辨率网络的轻量化人体姿态估计方法[J]. 计算机应用, 2022, 42(5): 1398-1406.
DOI |
SUN Q X, HE N, ZHANG J Z, et al. Lightweight human pose estimation method based on non-local high-resolution network[J]. Journal of Computer Applications, 2022, 42(5): 1398-1406 (in Chinese).
DOI |
|
[25] | 胡海涛, 杜昊晨, 王素琴, 等. 改进YOLOX的药品泡罩铝箔表面缺陷检测方法[J]. 图学学报, 2022, 43(5): 803-814. |
HU H T, DU H C, WANG S Q, et al. Improved YOLOX method for detecting surface defects of drug blister aluminum foil[J]. Journal of Graphics, 2022, 43(5): 803-814 (in Chinese). | |
[26] |
LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: The new benchmark and detection network[J]. Sensors, 2020, 20(6): 1562.
DOI URL |
[27] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580. |
[28] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2022-06-04]. https://arxiv.org/abs/1704.04861. |
[29] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[30] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 1314-1324. |
[31] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6848-6856. |
[32] | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 122-138. |
[33] | YU G H, CHANG Q Y, LV W Y, et al. PP-PicoDet: a better real-time object detector on mobile devices[EB/OL]. (2021-11-01) [2022-06-04]. https://arxiv.org/abs/2111.00902. |
[34] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[35] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[36] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[37] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[38] | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[EB/OL]. [2022-06-04]. http://proceedings.mlr.press/v15. |
[39] | BREHMER J, CRANMER K. Flows for simultaneous manifold learning and density estimation[C]// Advances in Neural Information Processing Systems. New York: ACM Press, 2020: 442-453. |
[40] | POPE P, ZHU C, ABDELKADER A, et al. The intrinsic dimension of images and its impact on learning[EB/OL]. (2021-04-18) [2022-06-04]. https://arxiv.org/abs/2104.08894. |
[41] | LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11966-11976. |
[42] | DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-08-15) [2022-06-04]. https://arxiv.org/abs/1708.04552. |
[43] | SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14449-14458. |
[44] | FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 3490-3499. |
[45] | ZHANG H, WANG Y, DAYOUB F, et al. Varifocalnet: an iou-aware dense object detector[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021:8514-8523. |
[46] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06) [2022-09-04]. https://arxiv.org/abs/2207.02696. |
[47] | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. (2019-07-17) [2022-06-04]. https://arxiv.org/abs/1906.07155. |
[1] |
YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming.
Reference based transformer texture migrates depth imagessuper resolution reconstruction
[J]. Journal of Graphics, 2023, 44(5): 861-867.
|
[2] |
DANG Hong-she, XU Huai-biao, ZHANG Xuan-de.
Deep learning stereo matching algorithm fusing structural information
[J]. Journal of Graphics, 2023, 44(5): 899-906.
|
[3] |
ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji.
Multi-fitting detection method for transmission lines based onimplicit spatial knowledge fusion
[J]. Journal of Graphics, 2023, 44(5): 918-927.
|
[4] |
ZHAO Zhen-bing, MA Di-ya, SHI Ying, Li Gang.
Appearance defect detection algorithm of substation instrumentbased on improved YOLOX
[J]. Journal of Graphics, 2023, 44(5): 937-946.
|
[5] |
YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan.
A local optimization generation model for image inpainting
[J]. Journal of Graphics, 2023, 44(5): 955-965.
|
[6] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[7] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[8] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[9] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[10] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. |
[11] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[12] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[13] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[14] | LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA [J]. Journal of Graphics, 2023, 44(3): 465-472. |
[15] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||