Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 726-735.DOI: 10.11996/JG.j.2095-302X.2024040726
• Image Processing and Computer Vision • Previous Articles Next Articles
Received:
2024-02-10
Accepted:
2024-06-26
Online:
2024-08-31
Published:
2024-09-03
About author:
First author contact:NIU Weihua (1978-), associate professor, Ph.D. Her main research interests cover computer vision. E-mail:niuwh@ncepu.edu.cn
CLC Number:
NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8[J]. Journal of Graphics, 2024, 45(4): 726-735.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040726
Module | Conv Focus | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
YOLOv3 | × | 7.2 | 21.1 | 80.7 | 68.0 | 74.4 |
YOLOv5 | × | 7.0 | 15.8 | 78.8 | 71.9 | 75.4 |
YOLOv8 | × | 3.0 | 8.1 | 74.1 | 78.2 | 76.1 |
YOLOv3 | √ | 7.7 | 37.0 | 82.5 | 70.0 | 76.2 (+1.8) |
YOLOv5 | √ | 8.0 | 29.7 | 79.5 | 74.3 | 76.9 (+1.5) |
YOLOv8 | √ | 3.2 | 11.6 | 77.2 | 78.3 | 77.8 (+1.7) |
Table 1 Comparison results of adding ConvFocus module to different algorithms
Module | Conv Focus | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
YOLOv3 | × | 7.2 | 21.1 | 80.7 | 68.0 | 74.4 |
YOLOv5 | × | 7.0 | 15.8 | 78.8 | 71.9 | 75.4 |
YOLOv8 | × | 3.0 | 8.1 | 74.1 | 78.2 | 76.1 |
YOLOv3 | √ | 7.7 | 37.0 | 82.5 | 70.0 | 76.2 (+1.8) |
YOLOv5 | √ | 8.0 | 29.7 | 79.5 | 74.3 | 76.9 (+1.5) |
YOLOv8 | √ | 3.2 | 11.6 | 77.2 | 78.3 | 77.8 (+1.7) |
Group | DCNv3数量 | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
G1 | 0 | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
G2 | n | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 |
G3 | 2n | 2.72 | 7.4 | 74.258 | 75.875 | 75.066 |
Table 2 Experimental results of replacing different numbers of DCNv3 in C2f module
Group | DCNv3数量 | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
G1 | 0 | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
G2 | n | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 |
G3 | 2n | 2.72 | 7.4 | 74.258 | 75.875 | 75.066 |
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|
YOLOv8n | 3.00 | 8.1 | 76.093 | 82.999 | 79.546 |
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 |
Table 3 Comparison of experimental results before and after improvement
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|
YOLOv8n | 3.00 | 8.1 | 76.093 | 82.999 | 79.546 |
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 |
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% | AP-Small/% | AR-Small/% |
---|---|---|---|---|---|---|---|
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 | 56.2 | 84.3 |
YOLOv8n-obb + CF | 3.33 | 11.8 | 79.299 | 83.616 | 81.458 | 63.2 | 84.5 |
YOLOv8n-obb + C2fD | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 | 59.5 | 84.9 |
YOLOv8n-obb + FF | 3.17 | 10.2 | 80.608 | 82.115 | 81.361 | 64.4 | 88.8 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 | 58.3 | 90.2 |
Table 4 Comparsion of the ablation experiments
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% | AP-Small/% | AR-Small/% |
---|---|---|---|---|---|---|---|
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 | 56.2 | 84.3 |
YOLOv8n-obb + CF | 3.33 | 11.8 | 79.299 | 83.616 | 81.458 | 63.2 | 84.5 |
YOLOv8n-obb + C2fD | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 | 59.5 | 84.9 |
YOLOv8n-obb + FF | 3.17 | 10.2 | 80.608 | 82.115 | 81.361 | 64.4 | 88.8 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 | 58.3 | 90.2 |
Method | Venue | Backbone | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% |
---|---|---|---|---|---|---|---|
GWD[ | ICML’21 | ResNet-50 | 36.42 | 215.92 | 61.90 | 10.40 | 36.20 |
KLD[ | NIPS’21 | ResNet-50 | 36.13 | 209.58 | 60.30 | 16.70 | 38.50 |
R3Det[ | AAAI’21 | ResNet-50 | 41.58 | 200.92 | 68.60 | 29.70 | 45.80 |
Gliding vertex[ | TPAMI’20 | ResNet-50 | 41.13 | 121.50 | 68.80 | 40.10 | 54.50 |
S2A-Net[ | TGRS’21 | ResNet-50 | 35.02 | 198.03 | 70.00 | 45.20 | 57.60 |
KFIoU[ | ICLR’23 | CSPDarkNet-53 | 11.42 | 29.60 | 75.71 | 71.07 | 73.39 |
PETDet[ | IEEE TGRS’23 | ResNet-50 | 47.67 | 204.07 | 78.70 | 78.50 | 78.60 |
YOLOv8n-obb | - | CSPDarkNet-53 | 3.07 | 8.30 | 77.69 | 82.82 | 80.26 |
Ours | - | CSPDarkNet-53 | 3.25 | 13.30 | 82.26 | 86.37 | 84.31 |
Table 5 Comparative experiments of different models on ShipRSImageNet dataset
Method | Venue | Backbone | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% |
---|---|---|---|---|---|---|---|
GWD[ | ICML’21 | ResNet-50 | 36.42 | 215.92 | 61.90 | 10.40 | 36.20 |
KLD[ | NIPS’21 | ResNet-50 | 36.13 | 209.58 | 60.30 | 16.70 | 38.50 |
R3Det[ | AAAI’21 | ResNet-50 | 41.58 | 200.92 | 68.60 | 29.70 | 45.80 |
Gliding vertex[ | TPAMI’20 | ResNet-50 | 41.13 | 121.50 | 68.80 | 40.10 | 54.50 |
S2A-Net[ | TGRS’21 | ResNet-50 | 35.02 | 198.03 | 70.00 | 45.20 | 57.60 |
KFIoU[ | ICLR’23 | CSPDarkNet-53 | 11.42 | 29.60 | 75.71 | 71.07 | 73.39 |
PETDet[ | IEEE TGRS’23 | ResNet-50 | 47.67 | 204.07 | 78.70 | 78.50 | 78.60 |
YOLOv8n-obb | - | CSPDarkNet-53 | 3.07 | 8.30 | 77.69 | 82.82 | 80.26 |
Ours | - | CSPDarkNet-53 | 3.25 | 13.30 | 82.26 | 86.37 | 84.31 |
Method | Params/M | FLOPs/G | mAP@50/% |
---|---|---|---|
Gliding Vertex[ | 41.13 | 121.50 | 88.20 |
R3Det[ | 41.58 | 200.92 | 89.26 |
Oriented RCNN[ | 121.58 | 41.13 | 90.33 |
RoI-Transformer[ | 122.61 | 55.13 | 90.21 |
H2RBox-v2[ | 51.41 | 242.69 | 89.66 |
PSC[ | 36.19 | 210.94 | 90.06 |
YOLOv8n-obb | 3.07 | 8.30 | 91.68 |
Ours | 3.25 | 13.30 | 93.23 |
Table 6 Comparative experiments of different models on HRSC2016 dataset
Method | Params/M | FLOPs/G | mAP@50/% |
---|---|---|---|
Gliding Vertex[ | 41.13 | 121.50 | 88.20 |
R3Det[ | 41.58 | 200.92 | 89.26 |
Oriented RCNN[ | 121.58 | 41.13 | 90.33 |
RoI-Transformer[ | 122.61 | 55.13 | 90.21 |
H2RBox-v2[ | 51.41 | 242.69 | 89.66 |
PSC[ | 36.19 | 210.94 | 90.06 |
YOLOv8n-obb | 3.07 | 8.30 | 91.68 |
Ours | 3.25 | 13.30 | 93.23 |
[1] | ZHU C R, ZHOU H, WANG R S, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3446-3456. |
[2] | SHI Z W, YU X R, JIANG Z G, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4511-4523. |
[3] | YANG F, XU Q Z, LI B. Ship detection from optical satellite images based on saliency segmentation and structure-LBP feature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 602-606. |
[4] | ZHANG D D, WANG C P, FU Q. OFCOS: an oriented anchor-free detector for ship detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6004005. |
[5] | REN Z D, TANG Y Q, HE Z W, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. |
[6] | HAN W X, KUERBAN A, YANG Y C, et al. Multi-vision network for accurate and real-time small object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6001205. |
[7] | 张磊, 陈文, 王岳环. 用于遥感舰船细粒度检测与识别的关键子区域融合网络[J]. 中国图象图形学报, 2023, 28(9): 2940-2955. |
ZHANG L, CHEN W, WANG Y H. Key sub-region feature fusion network for fine-grained ship detection and recognition in remote sensing images[J]. Journal of Image and Graphics, 2023, 28(9): 2940-2955 (in Chinese). | |
[8] | 焦仕昂, 罗亮, 杨萌, 等. 基于改进YOLOv7的光学遥感图像船舶旋转目标检测[EB/OL]. (2023-07-05)[2024-04-16]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1821.111.html. |
JIAO S A, LUO L, YANG M, et al. Ship rotating target detection in optical remote sensing images based on improved YOLOv7[EB/OL]. (2023-07-05)[2024-04-16]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1821.111.html (in Cinese). | |
[9] | 邹珺淏, 任酉贵, 冷芳玲, 等. LW-YOLOv7SAR: 轻量SAR图像目标检测方法[EB/OL]. (2023-11-06) [2024-04-16]. http://kns.cnki.net/kcms/detail/21.1106.TP.20231106.0909.002.html. |
ZOU J H, REN Y G, LENG F L, etc. LW-YOLOv7SAR: Lightweight SAR image target detection method[EB/OL]. (2023-11-06)[2024-04-16]. http://kns.cnki.net/kcms/detail/21.1106.TP.20231106.0909.002.html (in Chinese). | |
[10] | 李大湘, 吉展, 刘颖, 等. 改进YOLOv7遥感图像目标检测算法[EB/OL]. [2024-04-15]. https://kns.cnki.net/kcms/detail/10.1034.T.20240412.2210.004.html. |
LI D X, JI Z, LIU Y, et al. Improving YOLOv7 remote sensing image target detection algorithm[EB/OL]. [2024-04-15]. https://kns.cnki.net/kcms/detail/10.1034.T.20240412.2210.004.html (in Chinese). | |
[11] |
曾伦杰, 储珺, 陈昭俊. 二阶段锚框和类均衡损失的遥感图像目标检测[J]. 图学学报, 2023, 44(2): 249-259.
DOI |
ZENG L J, CHU J, CHEN Z J. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259 (in Chinese). | |
[12] | WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14408-14419. |
[13] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2004.10934. |
[14] | ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2024-04-15]. http://arxiv.org/abs/1710.09412. |
[15] | ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
[16] | LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2006.04388. |
[17] | YANG X, ZHANG G F, YANG X J, et al. Detecting rotated objects as Gaussian distributions and its 3-D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4335-4354. |
[18] | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 2844-2853. |
[19] | YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171. |
[20] | LLERENA J M, ZENI L F, KRISTEN L N, et al. Gaussian bounding boxes and probabilistic intersection-over-union for object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2106.06072. |
[21] | WANG R X, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 1785-1797. |
[22] | ZHANG Z N, ZHANG L, WANG Y, et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458-8472. |
[23] | HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. |
[24] | XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452-1459. |
[25] | YANG X, ZHANG G F, YANG X J, et al. Detecting rotated objects as Gaussian distributions and its 3-D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4335-4354. |
[26] | YANG X, ZHOU Y, ZHANG G F, et al. The KFIoU loss for rotated object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2201.12558. |
[27] | LI W T, ZHAO D P, YUAN B, et al. PETDet: proposal enhancement for two-stage fine-grained object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5602214. |
[28] | XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3500-3509. |
[29] | YU Y, YANG X, LI Q Y, et al. H2RBox-v2: incorporating symmetry for boosting horizontal box supervised oriented object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2304.04403. |
[30] | YU Y, DA F P. Phase-shifting coder: predicting accurate orientation in oriented object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 13354-13363. |
[1] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[2] |
WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie .
TFD-YOLOv8: a transmission line foreign object detection method
[J]. Journal of Graphics, 2024, 45(5): 901-912.
|
[3] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[4] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[5] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[6] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[7] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[8] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[9] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[10] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[11] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[12] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[13] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[14] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[15] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||