Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 1050-1061.DOI: 10.11996/JG.j.2095-302X.2024051050
• BIM/CIM • Previous Articles Next Articles
SUN Jilong1(), LIU Yong2, ZHOU Liwei2, LU Xin3,4, HOU Xiaolong2, WANG Yaqiong2, WANG Zhifeng2(
)
Received:
2024-04-24
Revised:
2024-08-13
Online:
2024-10-31
Published:
2024-10-31
Contact:
WANG Zhifeng
About author:
First author contact:SUN Jilong (1971-), senior engineer, master. His main research interest covers e quality and safety supervision of highway. E-mail:956036513@qq.com
Supported by:
CLC Number:
SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder[J]. Journal of Graphics, 2024, 45(5): 1050-1061.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024051050
工具 | 环境 |
---|---|
操作系统 | Ubuntu |
GPU | NVIDIA GeForce RTX 3080 Ti(12 GB) * 1GPU |
编译器 | PyCharm |
框架 | Pytorch2.0.0+CUDA11.8 |
语言 | Python3.8 |
Table 1 Experimental environment configuration
工具 | 环境 |
---|---|
操作系统 | Ubuntu |
GPU | NVIDIA GeForce RTX 3080 Ti(12 GB) * 1GPU |
编译器 | PyCharm |
框架 | Pytorch2.0.0+CUDA11.8 |
语言 | Python3.8 |
模型 | P | R | mAP@50 | mAP@50:95 | F1 |
---|---|---|---|---|---|
YOLOv8 | 86.32 | 76.38 | 80.82 | 63.22 | 80.05 |
YOLOv-DCNv2-① | 88.17 | 78.24 | 83.61 | 66.41 | 82.91 |
YOLOv8-DCNv2-② | 88.18 | 77.63 | 83.52 | 66.82 | 82.57 |
YOLOv8-DCNv2-③ | 87.82 | 78.01 | 84.03 | 66.22 | 82.62 |
YOLOv8-DCNv2-④ | 89.08 | 79.05 | 83.87 | 66.98 | 83.76 |
YOLOv-DCNv2-①+② | 87.21 | 77.21 | 80.52 | 64.31 | 81.91 |
YOLOv-DCNv2-①+③ | 87.34 | 76.92 | 82.92 | 66.14 | 81.80 |
YOLOv-DCNv2-①+④ | 88.02 | 78.54 | 83.01 | 66.73 | 83.01 |
YOLOv-DCNv2-②+③ | 87.91 | 78.39 | 82.16 | 65.98 | 82.88 |
YOLOv-DCNv2-②+④ | 87.83 | 79.01 | 83.27 | 66.23 | 83.19 |
YOLOv-DCNv2-①+②+③ | 86.15 | 76.31 | 80.26 | 65.87 | 80.93 |
YOLOv-DCNv2-①+③+④ | 85.82 | 77.26 | 81.38 | 66.08 | 81.32 |
YOLOv-DCNv2-②+③+④ | 86.96 | 77.53 | 82.23 | 66.33 | 81.97 |
YOLOv-DCNv2-①+②+③+④ | 86.52 | 76.94 | 81.07 | 65.97 | 81.45 |
Table 2 Experimental results of adding DCN v2 at different position/%
模型 | P | R | mAP@50 | mAP@50:95 | F1 |
---|---|---|---|---|---|
YOLOv8 | 86.32 | 76.38 | 80.82 | 63.22 | 80.05 |
YOLOv-DCNv2-① | 88.17 | 78.24 | 83.61 | 66.41 | 82.91 |
YOLOv8-DCNv2-② | 88.18 | 77.63 | 83.52 | 66.82 | 82.57 |
YOLOv8-DCNv2-③ | 87.82 | 78.01 | 84.03 | 66.22 | 82.62 |
YOLOv8-DCNv2-④ | 89.08 | 79.05 | 83.87 | 66.98 | 83.76 |
YOLOv-DCNv2-①+② | 87.21 | 77.21 | 80.52 | 64.31 | 81.91 |
YOLOv-DCNv2-①+③ | 87.34 | 76.92 | 82.92 | 66.14 | 81.80 |
YOLOv-DCNv2-①+④ | 88.02 | 78.54 | 83.01 | 66.73 | 83.01 |
YOLOv-DCNv2-②+③ | 87.91 | 78.39 | 82.16 | 65.98 | 82.88 |
YOLOv-DCNv2-②+④ | 87.83 | 79.01 | 83.27 | 66.23 | 83.19 |
YOLOv-DCNv2-①+②+③ | 86.15 | 76.31 | 80.26 | 65.87 | 80.93 |
YOLOv-DCNv2-①+③+④ | 85.82 | 77.26 | 81.38 | 66.08 | 81.32 |
YOLOv-DCNv2-②+③+④ | 86.96 | 77.53 | 82.23 | 66.33 | 81.97 |
YOLOv-DCNv2-①+②+③+④ | 86.52 | 76.94 | 81.07 | 65.97 | 81.45 |
Fig. 9 Comparison of differences in visualization of heat maps among different models ((a) Original images; (b) RT-DETR; (c) YOLOv8; (d) YOLOv8-DCNv2-④)
方案 | mAP@50/% | mAP@50:95/% | F1/% | FPS/帧每秒 | Par/M | GFLOPS/G |
---|---|---|---|---|---|---|
YOLOv8 | 80.82 | 63.22 | 80.05 | 45.57 | 3.1 | 8.9 |
YOLOv8-Decoder | 84.67 | 69.35 | 81.52 | 58.21 | 9.5 | 16.7 |
YOLOv8-DCNv2-④ | 83.87 | 66.98 | 83.76 | 52.48 | 3.0 | 8.7 |
DTD-YOLOv8 | 89.58 | 75.32 | 87.05 | 65.46 | 6.1 | 11.6 |
Table 3 Comparison of ablation test results
方案 | mAP@50/% | mAP@50:95/% | F1/% | FPS/帧每秒 | Par/M | GFLOPS/G |
---|---|---|---|---|---|---|
YOLOv8 | 80.82 | 63.22 | 80.05 | 45.57 | 3.1 | 8.9 |
YOLOv8-Decoder | 84.67 | 69.35 | 81.52 | 58.21 | 9.5 | 16.7 |
YOLOv8-DCNv2-④ | 83.87 | 66.98 | 83.76 | 52.48 | 3.0 | 8.7 |
DTD-YOLOv8 | 89.58 | 75.32 | 87.05 | 65.46 | 6.1 | 11.6 |
Fig. 12 Comparison of visual inspection results for tunnel lining crack detection ((a) Original images; (b) SSD; (c) Faster RCNN; (d) RT-DETR; (e) YOLOv5n; (f) YOLOv8n; (g) DTD-YOLOv8)
[1] | ZHANG L X, SHEN J K, ZHU B J. A review of the research and application of deep learning-based computer vision in structural damage detection[J]. Earthquake Engineering and Engineering Vibration, 2022, 21(1): 1-21. |
[2] | 刘新根, 陈莹莹, 朱爱玺, 等. 基于深度学习的隧道裂缝识别方法[J]. 广西大学学报: 自然科学版, 2018, 43(6): 2243-2251. |
LIU X G, CHEN Y Y, ZHU A X, et al. Tunnel crack identification based on deep learning[J]. Journal of Guangxi University: Natural Science Edition, 2018, 43(6): 2243-2251 (in Chinese). | |
[3] | 刘勇, 王志丰, 王亚琼, 等. 基于案例推理的隧道洞门智能设计方法研究[J]. 铁道标准设计, 2024, 68(6): 137-144. |
LIU Y, WANG Z F, WANG Y Q, et al. Investigation on intelligent design method of tunnel portal based on case-based reasoning[J]. Railway Standard Design, 2024, 68(6): 137-144 (in Chinese). | |
[4] | 刘学增, 李振, 杨芝璐, 等. 隧道衬砌裂缝特征对承载力的影响分析[J]. 哈尔滨工业大学学报, 2024, 56(7): 37-45. |
LIU X Z, LI Z, YANG Z L, et al. Analysis of the influence of tunnel lining cracks on bearing capacity[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 37-45 (in Chinese). | |
[5] | ZHANG A, WANG K C P, LI B X, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. |
[6] | FENG D S, WANG X, ZHANG B. Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD[J]. Construction and Building Materials, 2018, 185: 220-229. |
[7] | YU T T, ZHU A X, CHAN Y Y. Efficient crack detection method for tunnel lining surface cracks based on infrared images[J]. Journal of Computing in Civil Engineering, 2017, 31(3): 04016067. |
[8] | ZHOU S L, SONG W. Deep learning-based roadway crack classification using laser-scanned range images: a comparative study on hyperparameter selection[J]. Automation in Construction, 2020, 114: 103171. |
[9] | 杨泽洲, 陈思榕, 高翠芸, 等. 基于深度学习的代码生成方法研究进展[J]. 软件学报, 2024, 35(2): 604-628. |
YANG Z Z, CHEN S R, GAO C Y, et al. Deep learning based code generation methods: literature review[J]. Journal of Software, 2024, 35(2): 604-628 (in Chinese). | |
[10] | 窦慧, 张凌茗, 韩峰, 等. 卷积神经网络的可解释性研究综述[J]. 软件学报, 2024, 35(1): 159-184. |
DOU H, ZHANG L M, HAN F, et al. Survey on convolutional neural network interpretability[J]. Journal of Software, 2024, 35(1): 159-184 (in Chinese). | |
[11] | REN Y P, HUANG J S, HONG Z Y, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials, 2020, 234: 117367. |
[12] | 朱鑫. 隧道结构表面病害特征快速检测研究[D]. 成都: 西南交通大学, 2014. |
ZHU X. The research on rapid detection of characteristics of tunnel lining surface diseases[D]. Chengdu: Southwest Jiaotong University, 2014 (in Chinese). | |
[13] |
曹义亲, 周一纬, 徐露. 基于E-YOLOX的实时金属表面缺陷检测算法[J]. 图学学报, 2023, 44(4): 677-690.
DOI |
CAO Y Q, ZHOU Y W, XU L. A real-time metallic surface defect detection algorithm based on E-YOLOX[J]. Journal of Graphics, 2023, 44(4): 677-690 (in Chinese). | |
[14] |
杨柳, 吴晓群. 基于深度学习的三维形状补全研究综述[J]. 图学学报, 2023, 44(2): 201-215.
DOI |
YANG L, WU X Q. 3D shape completion via deep learning: a method survey[J]. Journal of Graphics, 2023, 44(2): 201-215 (in Chinese).
DOI |
|
[15] |
阎光伟, 刘润泽, 焦润海, 等. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860.
DOI |
YAN G W, LIU R Z, JIAO R H, et al. Detection method of dropped anti-vibration hammer for transmission line based on improved cascade RCNN[J]. Journal of Graphics, 2023, 44(5): 849-860 (in Chinese). | |
[16] |
曾伦杰, 储珺, 陈昭俊. 二阶段锚框和类均衡损失的遥感图像目标检测[J]. 图学学报, 2023, 44(2): 249-259.
DOI |
ZENG L J, CHU J, CHEN Z J. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259 (in Chinese). | |
[17] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[18] |
胡欣, 胡帅, 马丽军, 等. 基于融合MBAM与YOLOv5的PCB缺陷检测方法[J]. 图学学报, 2024, 45(1): 47-55.
DOI |
HU X, HU S, MA L J, et al. PCB defect detection method based on fusion of MBAM and YOLOv5[J]. Journal of Graphics, 2024, 45(1): 47-55 (in Chinese).
DOI |
|
[19] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[20] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |
[21] | ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2024-01-10]. https://arxiv.org/abs/2304.08069. |
[22] | ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. [2024-01-10]. https://arxiv.org/abs/2203.03605. |
[23] | 周中, 张俊杰, 鲁四平. 基于改进YOLOv4的隧道衬砌裂缝检测算法[J]. 铁道学报, 2023, 45(10): 162-170. |
ZHOU Z, ZHANG J J, LU S P. Tunnel lining crack detection algorithm based on improved YOLOv4[J]. Journal of the China Railway Society, 2023, 45(10): 162-170 (in Chinese). | |
[24] |
王建锋, 刘文豪, 潘清云. 基于图像处理与深度学习的隧道衬砌裂缝检测[J]. 北京交通大学学报, 2022, 46(5): 19-29.
DOI |
WANG J F, LIU W H, PAN Q Y. Crack detection for tunnel lining based on image processing and deep learning[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 19-29 (in Chinese).
DOI |
|
[25] | 何兆益, 常宝霞, 吴逸飞, 等. 基于YOLO v5-IBX网络模型的公路隧道衬砌裂缝检测方法研究[J]. 沈阳建筑大学学报: 自然科学版, 2023, 39(5): 888-898. |
HE Z Y, CHANG B X, WU Y F, et al. Research on crack detection method of highway tunnel lining based on YOLO v5-IBX network model[J]. Journal of Shenyang Jianzhu University: Natural Science, 2023, 39(5): 888-898 (in Chinese). | |
[26] | 陈莹莹, 刘新根, 黄永亮, 等. 基于神经网络与边缘修正的隧道衬砌裂缝识别[J]. 现代隧道技术, 2022, 59(6): 24-34. |
CHEN Y Y, LIU X G, HUANG Y L. Crack identification of tunnel lining based on neural network and edge correction[J]. Modern Tunnelling Technology, 2022, 59(6): 24-34 (in Chinese). | |
[27] | 刘新根, 陈莹莹, 王雨萱, 等. 基于级联神经网络的隧道衬砌裂缝识别算法研究[J]. 铁道学报, 2021, 43(10): 127-135. |
LIU X G, CHEN Y Y, WANG Y X, et al. Research on tunnel lining crack identification algorithm based on cascade neural network[J]. Journal of the China Railway Society, 2021, 43(10): 127-135 (in Chinese). | |
[28] | YU Z W, SHEN Y G, SHEN C K. A real-time detection approach for bridge cracks based on YOLOv4-FPM[J]. Automation in Construction, 2021, 122: 103514. |
[29] | ZHOU Z, ZHANG J J, GONG C J. Automatic detection method of tunnel lining multi-defects via an enhanced you only look once network[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(6): 762-780. |
[30] | 任松, 朱倩雯, 涂歆玥, 等. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报: 工学版, 2022, 56(1): 92-99. |
REN S, ZHU Q W, TU X Y, et al. Lining disease identification of highway tunnel based on deep learning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56(1): 92-99 (in Chinese). | |
[31] | 方广欣. 基于YOLOv5的地铁隧道裂缝检测技术研究[D]. 合肥: 合肥工业大学, 2021. |
FANG G X. Research on crack detection technology of subway tunnel based on YOLOv5[D]. Hefei: Hefei University of Technology, 2021 (in Chinese). | |
[32] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J/OL]. 图学学报, (2024-07-02) [2024-08-12]. http://kns.cnki.net/kcms/detail/10.1034.T.20240702.1112.002.html. |
WU B, TIAN Y. Research on multi-scale road damage detection algorithm based on attention mechanism[J/OL]. Journal of Graphics, (2024-07-02) [2024-08-12]. http://kns.cnki.net/kcms/detail/10.1034.T.20240702.1112.002.html (in Chinese). | |
[33] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J/OL]. 图学学报,(2024-07-01) [2024-08-12]. http://kns.cnki.net/kcms/detail/10.1034.t.20240701.1201.004.html. |
NIU W H, GUO X. Rotating target detection algorithm in ship remote sensing images based on YOLOv8[J/OL]. Journal of Graphics, (2024-07-01) [2024-08-12]. http://kns.cnki.net/kcms/detail/10.1034.t.20240701.1201.004.html (in Chinese). | |
[34] | ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9300-9308. |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[3] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[4] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[5] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[6] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[7] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[8] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[9] | GONG Yongchao, SHEN Xukun. A deep architecture for reciprocal object detection and instance segmentation [J]. Journal of Graphics, 2024, 45(4): 745-759. |
[10] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[11] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[12] | DENG Wei-ming, YANG Tie-jun, LI Chun-chun, HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[13] | LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA [J]. Journal of Graphics, 2023, 44(3): 465-472. |
[14] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[15] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||