Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 770-778.DOI: 10.11996/JG.j.2095-302X.2024040770
• Image Processing and Computer Vision • Previous Articles Next Articles
Received:
2024-04-26
Accepted:
2024-06-28
Online:
2024-08-31
Published:
2024-09-03
Contact:
TIAN Ying
About author:
First author contact:WU Bing (1999), MS candidate, his research interests include computer vision, deep learning. E-mail:2258860606@qq.com
Supported by:
CLC Number:
WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism[J]. Journal of Graphics, 2024, 45(4): 770-778.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040770
Algorithm | P/% | R/% | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8n | 57.8 | 53.0 | 53.4 | 24.1 | 3.0 | 8.1 |
YOLOv8+CBAM | 59.1 | 54.3 | 53.8 | 23.9 | 3.3 | 8.3 |
YOLOv8+SE | 58.8 | 52.3 | 52.5 | 23.8 | 3.0 | 8.2 |
YOLOv8+CA (Ours) | 63.0 | 54.5 | 54.3 | 24.1 | 3.0 | 8.2 |
Table 1 Comparison of experimental results of attention mechanism
Algorithm | P/% | R/% | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8n | 57.8 | 53.0 | 53.4 | 24.1 | 3.0 | 8.1 |
YOLOv8+CBAM | 59.1 | 54.3 | 53.8 | 23.9 | 3.3 | 8.3 |
YOLOv8+SE | 58.8 | 52.3 | 52.5 | 23.8 | 3.0 | 8.2 |
YOLOv8+CA (Ours) | 63.0 | 54.5 | 54.3 | 24.1 | 3.0 | 8.2 |
Algorithm | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|
SPPF | 53.4 | 24.1 | 3.0 | 8.1 |
SPPF+SA | 53.9 | 24.0 | 3.1 | 8.3 |
SPPF+Ghost | 53.4 | 23.9 | 2.9 | 8.0 |
SPPF-GS | 54.6 | 24.1 | 3.0 | 8.2 |
Table 2 The SPPF module improves the experimental results
Algorithm | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|
SPPF | 53.4 | 24.1 | 3.0 | 8.1 |
SPPF+SA | 53.9 | 24.0 | 3.1 | 8.3 |
SPPF+Ghost | 53.4 | 23.9 | 2.9 | 8.0 |
SPPF-GS | 54.6 | 24.1 | 3.0 | 8.2 |
YOLOv8n | C2f_DCN | CA | SPPF_GS | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|---|---|---|
√ | 53.4 | 24.1 | 3.0 | 8.1 | |||
√ | √ | 54.3 | 24.5 | 3.2 | 7.7 | ||
√ | √ | 54.3 | 24.0 | 3.0 | 8.2 | ||
√ | √ | 54.6 | 24.8 | 3.0 | 8.1 | ||
√ | √ | √ | 55.4 | 25.3 | 3.2 | 7.8 | |
√ | √ | √ | 54.2 | 24.7 | 3.2 | 7.8 | |
√ | √ | √ | √ | 56.2 | 25.0 | 3.2 | 7.8 |
Table 3 Results of ablation experiment
YOLOv8n | C2f_DCN | CA | SPPF_GS | mAP50/% | mAP50~95/% | Params/106 | GFLOPs |
---|---|---|---|---|---|---|---|
√ | 53.4 | 24.1 | 3.0 | 8.1 | |||
√ | √ | 54.3 | 24.5 | 3.2 | 7.7 | ||
√ | √ | 54.3 | 24.0 | 3.0 | 8.2 | ||
√ | √ | 54.6 | 24.8 | 3.0 | 8.1 | ||
√ | √ | √ | 55.4 | 25.3 | 3.2 | 7.8 | |
√ | √ | √ | 54.2 | 24.7 | 3.2 | 7.8 | |
√ | √ | √ | √ | 56.2 | 25.0 | 3.2 | 7.8 |
Algorithm | mAP50/% | mAP50~95/% | Params/106 | GFLOPs | FPS |
---|---|---|---|---|---|
Faster-RCNN | 43.5 | 17.2 | 137.5 | 370.3 | 28 |
YOLOv3tiny | 42.4 | 17.2 | 12.1 | 19.1 | 176 |
YOLOv4tiny | 40.0 | 16.5 | 6.1 | 16.5 | 156 |
YOLOv5s | 51.6 | 23.7 | 7.0 | 16.0 | 85 |
YOLOv6 | 52.1 | 23.8 | 4.2 | 11.9 | 87 |
YOLOv7tiny | 48.4 | 19.4 | 6.0 | 13.2 | 117 |
YOLOv8n | 53.4 | 24.0 | 3.0 | 8.2 | 105 |
YOLOv9c | 59.1 | 29.6 | 156.0 | 68.1 | 103 |
RT-DETR | 56.7 | 25.6 | 20.1 | 58.3 | 124 |
Swin Transformer | 55.8 | 25.1 | 96.8 | 17.1 | 99 |
YOLOv8-RDD | 56.2 | 25.0 | 3.2 | 7.8 | 95 |
Table 4 Results of comparative experiment
Algorithm | mAP50/% | mAP50~95/% | Params/106 | GFLOPs | FPS |
---|---|---|---|---|---|
Faster-RCNN | 43.5 | 17.2 | 137.5 | 370.3 | 28 |
YOLOv3tiny | 42.4 | 17.2 | 12.1 | 19.1 | 176 |
YOLOv4tiny | 40.0 | 16.5 | 6.1 | 16.5 | 156 |
YOLOv5s | 51.6 | 23.7 | 7.0 | 16.0 | 85 |
YOLOv6 | 52.1 | 23.8 | 4.2 | 11.9 | 87 |
YOLOv7tiny | 48.4 | 19.4 | 6.0 | 13.2 | 117 |
YOLOv8n | 53.4 | 24.0 | 3.0 | 8.2 | 105 |
YOLOv9c | 59.1 | 29.6 | 156.0 | 68.1 | 103 |
RT-DETR | 56.7 | 25.6 | 20.1 | 58.3 | 124 |
Swin Transformer | 55.8 | 25.1 | 96.8 | 17.1 | 99 |
YOLOv8-RDD | 56.2 | 25.0 | 3.2 | 7.8 | 95 |
Algorithm | YOLOv8n | YOLOv8-RDD | ||
---|---|---|---|---|
Type | mAP50% | mAP50%~95% | mAP50% | mAP50%~95% |
D00 | 58.2 | 26.5 | 60.1(+1.9) | 27.4(+0.9) |
D10 | 50.6 | 24.1 | 54.2(+3.6) | 25.1(+1.0) |
D20 | 59.4 | 25.9 | 61.0(+1.6) | 27.7(+1.8) |
D40 | 60.2 | 27.5 | 62.8(+2.6) | 29.4(+1.9) |
All | 57.2 | 25.3 | 59.5(+2.3) | 27.2(+1.9) |
Table 5 Results of generalization ability experiment
Algorithm | YOLOv8n | YOLOv8-RDD | ||
---|---|---|---|---|
Type | mAP50% | mAP50%~95% | mAP50% | mAP50%~95% |
D00 | 58.2 | 26.5 | 60.1(+1.9) | 27.4(+0.9) |
D10 | 50.6 | 24.1 | 54.2(+3.6) | 25.1(+1.0) |
D20 | 59.4 | 25.9 | 61.0(+1.6) | 27.7(+1.8) |
D40 | 60.2 | 27.5 | 62.8(+2.6) | 29.4(+1.9) |
All | 57.2 | 25.3 | 59.5(+2.3) | 27.2(+1.9) |
[1] | 曾志超, 徐玥, 王景玉, 等. 基于SOE-YOLO轻量化的水面目标检测算法[EB/OL]. [2024-04-25]. http://kns.cnki.net/kcms/detail/10.1034.T.20240417.1457.002.html. |
ZENG Z C, XU Y, WANG J Y, et al. A water surface target detection algorithm based on SOE-YOLO lightweight network[EB/OL]. [2024-04-25]. http://kns.cnki.net/kcms/detail/10.1034.T.20240417.1457.002.html (in Chinese). | |
[2] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[3] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448. |
[4] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[5] | KANG D, BENIPAL S S, GOPAL D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118: 103291. |
[6] | YAMAGUCHI T, MIZUTANI T. Quantitative road crack evaluation by a U-Net architecture using smartphone images and Lidar data[J]. Computer-Aided Civil and Infrastructure Engineering, 2024, 39(7): 963-982. |
[7] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[8] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[9] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-04-25]. http://arxiv.org/abs/1804.02767. |
[10] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-04-25]. http://arxiv.org/abs/2004.10934. |
[11] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[12] | WANG N N, SHANG L H, SONG X T. A transformer- optimized deep learning network for road damage detection and tracking[J]. Sensors, 2023, 23(17): 7395. |
[13] | XIANG W N, WANG H C, XU Y, et al. Road disease detection algorithm based on YOLOv5s-DSG[J]. Journal of Real-Time Image Processing, 2023, 20(3): 56. |
[14] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[15] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
[16] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 764-773. |
[17] | ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9300-9308. |
[18] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2024-01-12]. https://arxiv.org/abs/1706.03762. |
[19] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-01-12]. http://arxiv.org/abs/1704.04861. |
[20] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[21] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[1] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[2] |
WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie .
TFD-YOLOv8: a transmission line foreign object detection method
[J]. Journal of Graphics, 2024, 45(5): 901-912.
|
[3] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[4] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[5] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[6] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[7] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[8] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[9] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[10] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[11] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[12] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[13] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[14] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[15] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||