Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 779-790.DOI: 10.11996/JG.j.2095-302X.2024040779
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHAO Lei(), LI Dong(
), FANG Jiandong, CAO Qi
Received:
2024-04-18
Accepted:
2024-06-13
Online:
2024-08-31
Published:
2024-09-03
Contact:
LI Dong
About author:
First author contact:ZHAO Lei (1999-), master student. His main research interests cover computer vision, information processing and intelligent control. E-mail:zhaolei990323@163.com
Supported by:
CLC Number:
ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs[J]. Journal of Graphics, 2024, 45(4): 779-790.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040779
Neck | Params/M | GFLOPs | mAP | mAP@50:95 |
---|---|---|---|---|
Slim | 11.1 | 21.7 | 0.757 | 0.567 |
ASF | 13.5 | 30.9 | 0.775 | 0.577 |
SLA | 13.6 | 29.5 | 0.781 | 0.580 |
Table 1 Comparative experiments with neck net works
Neck | Params/M | GFLOPs | mAP | mAP@50:95 |
---|---|---|---|---|
Slim | 11.1 | 21.7 | 0.757 | 0.567 |
ASF | 13.5 | 30.9 | 0.775 | 0.577 |
SLA | 13.6 | 29.5 | 0.781 | 0.580 |
模型 | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|
DBB+EMA | 30.1 | 0.758 | 0.563 |
DBB+SE | 29.6 | 0.770 | 0.571 |
BB+CA | 29.7 | 0.743 | 0.548 |
DBB+SimAM | 31.1 | 0.762 | 0.576 |
DBB+CBAM | 29.8 | 0.767 | 0.570 |
DBB+ECA | 29.8 | 0.758 | 0.551 |
Table 2 Comparative experiment with attention modules
模型 | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|
DBB+EMA | 30.1 | 0.758 | 0.563 |
DBB+SE | 29.6 | 0.770 | 0.571 |
BB+CA | 29.7 | 0.743 | 0.548 |
DBB+SimAM | 31.1 | 0.762 | 0.576 |
DBB+CBAM | 29.8 | 0.767 | 0.570 |
DBB+ECA | 29.8 | 0.758 | 0.551 |
IoU-Aware | DBB | DBB-SE | SLA | 小尺寸检测层 | SIoU | Precision | Recall | Params/M | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.728 | 0.566 | 7 074 853 | 16.0 | 0.602 | 0.446 | ||||||
√ | 0.845 | 0.728 | 11 003 844 | 22.8 | 0.750 | 0.555 | |||||
√ | √ | 0.844 | 0.736 | 12 994 788 | 27.6 | 0.759 | 0.563 | ||||
√ | √ | √ | 0.835 | 0.773 | 13 324 772 | 29.6 | 0.770 | 0.570 | |||
√ | √ | √ | √ | 0.855 | 0.781 | 13 644 342 | 29.5 | 0.781 | 0.581 | ||
√ | √ | √ | √ | √ | 0.865 | 0.789 | 13 694 324 | 46.8 | 0.807 | 0.613 | |
√ | √ | √ | √ | √ | √ | 0.874 | 0.791 | 13 694 324 | 46.8 | 0.812 | 0.615 |
Table 3 Ablation experiment
IoU-Aware | DBB | DBB-SE | SLA | 小尺寸检测层 | SIoU | Precision | Recall | Params/M | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.728 | 0.566 | 7 074 853 | 16.0 | 0.602 | 0.446 | ||||||
√ | 0.845 | 0.728 | 11 003 844 | 22.8 | 0.750 | 0.555 | |||||
√ | √ | 0.844 | 0.736 | 12 994 788 | 27.6 | 0.759 | 0.563 | ||||
√ | √ | √ | 0.835 | 0.773 | 13 324 772 | 29.6 | 0.770 | 0.570 | |||
√ | √ | √ | √ | 0.855 | 0.781 | 13 644 342 | 29.5 | 0.781 | 0.581 | ||
√ | √ | √ | √ | √ | 0.865 | 0.789 | 13 694 324 | 46.8 | 0.807 | 0.613 | |
√ | √ | √ | √ | √ | √ | 0.874 | 0.791 | 13 694 324 | 46.8 | 0.812 | 0.615 |
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.551 |
YOLOv3 | 61.7 | 185.3 | 0.772 |
YOLOv4 | 96.9 | 141.7 | 0.643 |
YOLOv5s | 7.2 | 16.0 | 0.602 |
YOLOv8s | 11.2 | 28.6 | 0.589 |
YOLOv5m | 21.0 | 48.4 | 0.673 |
YOLOv6 | 31.3 | - | 0.742 |
YOLOv7 | 36.6 | 103.6 | 0.563 |
YOLOv7-tiny | 6.1 | 13.1 | 0.370 |
YOLOv8 | 11.2 | 28.6 | 0.654 |
SSD | 25.0 | 274.05 | 0.268 |
文献[29] | 2.8 | - | 0.719 |
文献[30] | - | - | 0.752 |
文献[31] | - | - | 0.742 |
Deformable DETR | 40.0 | 128.0 | 0.771 |
RT-DETR-l | 32.0 | 103.6 | 0.796 |
Ours | 13.7 | 46.8 | 0.812 |
Table 4 TT100K Contrast experiment
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.551 |
YOLOv3 | 61.7 | 185.3 | 0.772 |
YOLOv4 | 96.9 | 141.7 | 0.643 |
YOLOv5s | 7.2 | 16.0 | 0.602 |
YOLOv8s | 11.2 | 28.6 | 0.589 |
YOLOv5m | 21.0 | 48.4 | 0.673 |
YOLOv6 | 31.3 | - | 0.742 |
YOLOv7 | 36.6 | 103.6 | 0.563 |
YOLOv7-tiny | 6.1 | 13.1 | 0.370 |
YOLOv8 | 11.2 | 28.6 | 0.654 |
SSD | 25.0 | 274.05 | 0.268 |
文献[29] | 2.8 | - | 0.719 |
文献[30] | - | - | 0.752 |
文献[31] | - | - | 0.742 |
Deformable DETR | 40.0 | 128.0 | 0.771 |
RT-DETR-l | 32.0 | 103.6 | 0.796 |
Ours | 13.7 | 46.8 | 0.812 |
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.757 |
YOLOv3 | 61.7 | 185.3 | 0.581 |
YOLOv4 | 96.9 | 141.7 | 0.742 |
YOLOv5 | 7.2 | 16.1 | 0.798 |
YOLOv7 | 36.3 | 103.6 | 0.742 |
YOLOv8 | 11.2 | 28.6 | 0.790 |
文献[32] | - | - | 0.808 |
文献[33] | 2.6 | 24.7 | 0.856 |
文献[34] | 8.9 | - | 0.918 |
RT-DETR-l | 32.0 | 103.6 | 0.821 |
Ours | 13.7 | 46.8 | 0.921 |
Table 5 CCTSDB Contrast experiment
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.757 |
YOLOv3 | 61.7 | 185.3 | 0.581 |
YOLOv4 | 96.9 | 141.7 | 0.742 |
YOLOv5 | 7.2 | 16.1 | 0.798 |
YOLOv7 | 36.3 | 103.6 | 0.742 |
YOLOv8 | 11.2 | 28.6 | 0.790 |
文献[32] | - | - | 0.808 |
文献[33] | 2.6 | 24.7 | 0.856 |
文献[34] | 8.9 | - | 0.918 |
RT-DETR-l | 32.0 | 103.6 | 0.821 |
Ours | 13.7 | 46.8 | 0.921 |
[1] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// The 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 81(1): 580-587. |
[2] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press 2015: 1440-1448. |
[3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[4] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[5] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[6] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-02-18]. http://arxiv.org/abs/1804.02767. |
[7] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2004.10934. |
[8] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2209.02976. |
[9] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[10] | LONG X, DENG K P, WANG G Z, et al. PP-YOLO: an effective and efficient implementation of object detector[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2007.12099v1. |
[11] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2107.08430. |
[12] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[13] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2024-02-18]. http://arxiv.org/abs/1701.06659. |
[14] | 张毅, 龚致远, 韦文闻. 基于改进Faster R-CNN模型的交通标志检测[J]. 激光与光电子学进展, 2020, 57(18): 181015. |
ZHANG Y, GONG Z Y, WEI W W. Traffic sign detection based on improved faster R-CNN model[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181015 (in Chinese). | |
[15] |
HAN C, GAO G Y, ZHANG Y. Real-time small traffic sign detection with revised faster-RCNN[J]. Multimedia Tools and Applications, 2019, 78(10): 13263-13278.
DOI |
[16] |
冯爱棋, 吴小俊, 徐天阳. 融合注意力机制和上下文信息的实时交通标志检测算法[J]. 计算机科学与探索, 2023, 17(11): 2676-2688.
DOI |
FENG A Q, WU X J, XU T Y. Real-time traffic sign detection algorithm combining attention mechanism and contextual information[J]. Jour-nal of Frontiers of Computer Science and Technology, 2023, 17(11): 2676-2688 (in Chinese). | |
[17] |
刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测[J]. 计算机工程与应用, 2021, 57(7): 164-170.
DOI |
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 traffic sign detection based on SPP and improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170 (in Chinese).
DOI |
|
[18] |
杨永波, 李栋, 房建东, 等. 面向嵌入式端的轻量级交通信号灯检测算法[J]. 计算机工程与应用, 2024, 60(13): 361-368.
DOI |
YANG YB, LI D, FANG J D, et al. Lightweight traffic signal light detection algorithm for the embedded terminal[J]. Computer Engineering and Applications, 2024, 60(13): 361-368 (in Chinese). | |
[19] | 李大湘, 吉展, 刘颖, 等. 改进YOLOv7遥感图像目标检测算法[EB/OL]. [2024-04-18]. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uuyhaohXNotWIn6vQFd3Q_JqEQPLueEwbKNDvFqVx25_5lOC1ciz_54Jr1hdXOh80TSX5k2Tr44fUss_NQ038vn0vBiKN3AghPdb4h6KHn9S5nhgRl0fH9CWftgVTxLC-IYCCe-DAQq2mQSIlfl_pDaMUEhZuh9ayjaRrXR1klBJ2S3JrmzWP_oaWLANdRCHFw=&uniplatform=NZKPT&language=CHS. |
LI D X, JI Z, LIU Y, et al. Improving YOLOv7 remote sensing image target detection algorithm[EB/OL]. [2024-04-18]. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uuyhaohXNotWIn6vQFd3Q_JqEQPLueEwbKNDvFqVx25_5lOC1ciz_54Jr1hdXOh80TSX5k2Tr44fUss_NQ038vn0vBiKN3AghPdb4h6KHn9S5nhgRl0fH9CWftgVTxLC-IYCCe-DAQq2mQSIlfl_pDaMUEhZuh9ayjaRrXR1klBJ2S3JrmzWP_oaWLANdRCHFw=&uniplatform=NZKPT&language=CHS (in Chinese). | |
[20] | DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10881-10890. |
[21] |
李跃华, 仲新, 姚章燕, 等. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445.
DOI |
LI Y H, ZHONG X, YAO Z Y, et al. Detection of dress code violations based on improved YOLOv5s[J]. Journal of Graphics, 2024, 45(3): 433-445 (in Chinese).
DOI |
|
[22] |
胡欣, 胡帅, 马丽军, 等. 基于融合MBAM与YOLOv5的PCB缺陷检测方法[J]. 图学学报, 2024, 45(1): 47-55.
DOI |
HU X, HU S, MA L J, et al. PCB defect detection method based on fusion of MBAM and YOLOv5[J]. Journal of Graphics, 2024, 45(1): 47-55 (in Chinese).
DOI |
|
[23] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
[24] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[25] | LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2206.02424. |
[26] | KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance seg-mentation[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2312.06458. |
[27] | LV W Y, Zhao Y A, XU S L, et al. DETRs Beat YOLOs on Real-time Object Detection[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2304.0869v2. |
[28] | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2205.12740. |
[29] |
熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost-YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20): 200-207.
DOI |
XIONG E J, ZHANG R F, LIU Y H, et al. Ghost-YOLOv8 Detection Algo-rithm for Traffic Signs[J]. Computer Engineering and Applications, 2023, 59(20): 200-207 (in Chinese).
DOI |
|
[30] |
刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测[J]. 计算机工程与应用, 2021, 57(7): 164-170.
DOI |
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 Traffic sign Detection based on SPP and Improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170 (in Chinese).
DOI |
|
[31] |
韦强, 胡晓阳, 赵虹鑫. 改进YOLOv5的交通标志检测方法[J]. 计算机工程与应用, 2023, 59(13): 229-237.
DOI |
WEI Q, HU X Y, ZHAO H X. Improved traffic sign detection method for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 229-237 (in Chinese).
DOI |
|
[32] |
田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
DOI |
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212 (in Chinese).
DOI |
|
[33] |
胡昭华, 王莹. 改进YOLOv5的交通标志检测算法[J]. 计算机工程与应用, 2023, 59(1): 82-91.
DOI |
HU Z H, WANG Y. Improved Traffic Sign Detection Algorithm for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 82-91 (in Chinese).
DOI |
|
[34] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报. 2024, 45(3): 422-432.
DOI |
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432 (in Chinese).
DOI |
[1] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[2] | ZHU Baoxu, LIU Mandan, ZHANG Wenting, XIE Lizhi. Full process generation method of high-resolution face texture map [J]. Journal of Graphics, 2024, 45(4): 814-826. |
[3] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[4] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[5] | HU Xin, HU Shuai, MA Lijun, SI Liyun, XIAO Jian, YUAN Ye. PCB defect detection method based on fusion of MBAM and YOLOv5 [J]. Journal of Graphics, 2024, 45(1): 47-55. |
[6] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[7] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[8] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[9] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[10] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
[11] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
[12] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. |
[13] | LI Xiao-bo, LI Yang-gui, GUO Ning, FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[14] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
[15] | ZHAO Lu-lu , WANG Xue-ying , ZHANG Yi , ZHANG Mei-yue. Vehicle target detection based on YOLOv5s fusion SENet [J]. Journal of Graphics, 2022, 43(5): 776-782. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||