Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 1017-1029.DOI: 10.11996/JG.j.2095-302X.2024051017
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
Received:
2024-05-07
Revised:
2024-08-28
Online:
2024-10-31
Published:
2024-10-31
About author:
First author contact:PENG Wen (1980-), associate professor, Ph.D. His main research interests cover medical image registration, medical image analysis, etc. E-mail:pengwen@ncepu.edu.cn
CLC Number:
PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement[J]. Journal of Graphics, 2024, 45(5): 1017-1029.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024051017
数据增强 | 训练集 | 验证集 | 测试集 | 总数 |
---|---|---|---|---|
增强前 | 3 220 | 460 | 920 | 4 600 |
增强后 | 45 080 | 460 | 920 | 46 460 |
Table 1 Distribution of experimental dataset ds1
数据增强 | 训练集 | 验证集 | 测试集 | 总数 |
---|---|---|---|---|
增强前 | 3 220 | 460 | 920 | 4 600 |
增强后 | 45 080 | 460 | 920 | 46 460 |
图像 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
原始图像 | 94.67 | 94.83 | 94.46 | 94.59 | 95.20 | 91.98 |
放大图像 | 98.04 | 98.08 | 97.81 | 97.90 | 98.33 | 97.42 |
Table 2 Experimental results of original and enlarged images/%
图像 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
原始图像 | 94.67 | 94.83 | 94.46 | 94.59 | 95.20 | 91.98 |
放大图像 | 98.04 | 98.08 | 97.81 | 97.90 | 98.33 | 97.42 |
纹理增强模块 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
文献[32] | 96.88 | 96.95 | 97.08 | 96.94 | 97.70 | 95.25 |
文献[33] | 97.15 | 96.87 | 96.91 | 97.03 | 97.86 | 95.47 |
STL | 97.32 | 96.98 | 97.10 | 97.11 | 98.02 | 95.98 |
Table 3 Experimental results of texture enhancement module comparison/%
纹理增强模块 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
文献[32] | 96.88 | 96.95 | 97.08 | 96.94 | 97.70 | 95.25 |
文献[33] | 97.15 | 96.87 | 96.91 | 97.03 | 97.86 | 95.47 |
STL | 97.32 | 96.98 | 97.10 | 97.11 | 98.02 | 95.98 |
方法 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
Inception_ResNetV2 | 96.31 | 96.25 | 96.11 | 96.14 | 97.69 | 94.01 |
With SA | 97.28 | 97.08 | 97.08 | 97.04 | 98.08 | 95.58 |
With DSC | 97.07 | 96.72 | 96.88 | 96.77 | 97.61 | 95.87 |
With STL | 97.32 | 96.98 | 97.10 | 97.11 | 98.02 | 95.98 |
With SA and DSC | 97.50 | 97.30 | 97.56 | 97.39 | 98.17 | 96.07 |
With SA and STL | 97.71 | 97.35 | 97.70 | 97.62 | 98.25 | 96.43 |
With DSC and STL | 97.67 | 97.58 | 97.58 | 97.61 | 98.19 | 96.71 |
With SA, DSC and STL | 98.04 | 98.08 | 97.81 | 97.90 | 98.33 | 97.42 |
Table 4 Ablation experimental results/%
方法 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
Inception_ResNetV2 | 96.31 | 96.25 | 96.11 | 96.14 | 97.69 | 94.01 |
With SA | 97.28 | 97.08 | 97.08 | 97.04 | 98.08 | 95.58 |
With DSC | 97.07 | 96.72 | 96.88 | 96.77 | 97.61 | 95.87 |
With STL | 97.32 | 96.98 | 97.10 | 97.11 | 98.02 | 95.98 |
With SA and DSC | 97.50 | 97.30 | 97.56 | 97.39 | 98.17 | 96.07 |
With SA and STL | 97.71 | 97.35 | 97.70 | 97.62 | 98.25 | 96.43 |
With DSC and STL | 97.67 | 97.58 | 97.58 | 97.61 | 98.19 | 96.71 |
With SA, DSC and STL | 98.04 | 98.08 | 97.81 | 97.90 | 98.33 | 97.42 |
模型 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
VGG | 89.99 | 89.96 | 90.11 | 89.95 | 92.60 | 87.11 |
ResNet | 95.18 | 95.34 | 95.01 | 95.12 | 96.95 | 92.31 |
DenseNet | 95.94 | 95.88 | 96.13 | 95.99 | 97.18 | 94.11 |
Xception | 93.92 | 93.41 | 94.16 | 93.95 | 96.30 | 91.95 |
Vision Transformer | 97.07 | 97.11 | 97.11 | 97.04 | 97.95 | 96.62 |
VAN | 97.50 | 97.63 | 97.44 | 97.58 | 98.26 | 96.78 |
CIR-Net | 96.52 | 96.10 | 96.77 | 96.47 | 98.03 | 93.59 |
SIATE-Net | 98.04 | 98.08 | 97.71 | 97.90 | 98.33 | 97.42 |
Table 5 Comparison of overall classification performance of different models on the ds1 dataset/%
模型 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
VGG | 89.99 | 89.96 | 90.11 | 89.95 | 92.60 | 87.11 |
ResNet | 95.18 | 95.34 | 95.01 | 95.12 | 96.95 | 92.31 |
DenseNet | 95.94 | 95.88 | 96.13 | 95.99 | 97.18 | 94.11 |
Xception | 93.92 | 93.41 | 94.16 | 93.95 | 96.30 | 91.95 |
Vision Transformer | 97.07 | 97.11 | 97.11 | 97.04 | 97.95 | 96.62 |
VAN | 97.50 | 97.63 | 97.44 | 97.58 | 98.26 | 96.78 |
CIR-Net | 96.52 | 96.10 | 96.77 | 96.47 | 98.03 | 93.59 |
SIATE-Net | 98.04 | 98.08 | 97.71 | 97.90 | 98.33 | 97.42 |
模型 | 短小染色体F1-score | ||||||||
---|---|---|---|---|---|---|---|---|---|
c16 | c17 | c18 | c19 | c20 | c21 | c22 | cY | avg | |
VGG | 88.61 | 91.57 | 84.21 | 79.52 | 86.49 | 92.31 | 86.36 | 90.00 | 87.11 |
ResNet | 92.68 | 96.30 | 92.31 | 89.58 | 90.91 | 93.83 | 89.66 | 94.74 | 92.31 |
DenseNet | 93.83 | 97.50 | 90.24 | 95.31 | 92.74 | 96.30 | 92.68 | 94.74 | 94.11 |
Xception | 91.78 | 95.64 | 90.28 | 89.14 | 89.69 | 95.61 | 91.17 | 93.29 | 91.95 |
Vision Transformer | 98.28 | 100.00 | 95.11 | 96.31 | 95.91 | 94.20 | 95.68 | 100.00 | 96.62 |
VAN | 98.77 | 100.00 | 93.20 | 96.74 | 95.09 | 98.30 | 95.87 | 94.74 | 96.78 |
CIR-Net | 95.12 | 94.74 | 93.67 | 88.31 | 92.50 | 97.50 | 92.86 | 95.24 | 93.59 |
SIATE-Net | 97.56 | 97.50 | 96.30 | 97.44 | 96.30 | 100.00 | 97.50 | 94.74 | 97.42 |
Table 6 Comparison of different models’ performance on short chromosome classes in the ds1 dataset/%
模型 | 短小染色体F1-score | ||||||||
---|---|---|---|---|---|---|---|---|---|
c16 | c17 | c18 | c19 | c20 | c21 | c22 | cY | avg | |
VGG | 88.61 | 91.57 | 84.21 | 79.52 | 86.49 | 92.31 | 86.36 | 90.00 | 87.11 |
ResNet | 92.68 | 96.30 | 92.31 | 89.58 | 90.91 | 93.83 | 89.66 | 94.74 | 92.31 |
DenseNet | 93.83 | 97.50 | 90.24 | 95.31 | 92.74 | 96.30 | 92.68 | 94.74 | 94.11 |
Xception | 91.78 | 95.64 | 90.28 | 89.14 | 89.69 | 95.61 | 91.17 | 93.29 | 91.95 |
Vision Transformer | 98.28 | 100.00 | 95.11 | 96.31 | 95.91 | 94.20 | 95.68 | 100.00 | 96.62 |
VAN | 98.77 | 100.00 | 93.20 | 96.74 | 95.09 | 98.30 | 95.87 | 94.74 | 96.78 |
CIR-Net | 95.12 | 94.74 | 93.67 | 88.31 | 92.50 | 97.50 | 92.86 | 95.24 | 93.59 |
SIATE-Net | 97.56 | 97.50 | 96.30 | 97.44 | 96.30 | 100.00 | 97.50 | 94.74 | 97.42 |
模型 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
VGG | 92.58 | 91.91 | 92.17 | 92.23 | 93.27 | 91.31 |
ResNet | 94.77 | 93.95 | 94.62 | 93.70 | 95.69 | 92.97 |
DenseNet | 95.85 | 95.60 | 94.47 | 94.55 | 96.76 | 93.44 |
Xception | 93.53 | 93.76 | 93.33 | 93.62 | 95.38 | 91.07 |
Vision Transformer | 97.96 | 97.84 | 97.36 | 97.97 | 98.63 | 94.93 |
VAN | 98.55 | 98.71 | 98.54 | 98.60 | 98.96 | 98.27 |
CIR-Net | 96.12 | 95.87 | 96.15 | 96.03 | 97.25 | 94.08 |
SIATE-Net | 98.95 | 98.60 | 98.84 | 98.84 | 99.27 | 98.51 |
Table 7 Comparison of overall classification performance of different models on the ds2 dataset/%
模型 | Acc | P | R | F1-score | L-F1 | S-F1 |
---|---|---|---|---|---|---|
VGG | 92.58 | 91.91 | 92.17 | 92.23 | 93.27 | 91.31 |
ResNet | 94.77 | 93.95 | 94.62 | 93.70 | 95.69 | 92.97 |
DenseNet | 95.85 | 95.60 | 94.47 | 94.55 | 96.76 | 93.44 |
Xception | 93.53 | 93.76 | 93.33 | 93.62 | 95.38 | 91.07 |
Vision Transformer | 97.96 | 97.84 | 97.36 | 97.97 | 98.63 | 94.93 |
VAN | 98.55 | 98.71 | 98.54 | 98.60 | 98.96 | 98.27 |
CIR-Net | 96.12 | 95.87 | 96.15 | 96.03 | 97.25 | 94.08 |
SIATE-Net | 98.95 | 98.60 | 98.84 | 98.84 | 99.27 | 98.51 |
模型 | 短小染色体F1-score | ||||||||
---|---|---|---|---|---|---|---|---|---|
c16 | c17 | c18 | c19 | c20 | c21 | c22 | cY | avg | |
VGG | 94.55 | 93.87 | 91.13 | 89.92 | 89.36 | 90.98 | 91.74 | 79.06 | 91.31 |
ResNet | 96.13 | 95.28 | 92.46 | 86.74 | 90.15 | 91.27 | 92.68 | 88.95 | 92.97 |
DenseNet | 95.64 | 96.30 | 95.64 | 89.58 | 92.74 | 93.68 | 95.87 | 70.06 | 93.44 |
Xception | 92.19 | 94.76 | 95.11 | 85.67 | 89.33 | 90.04 | 91.63 | 85.00 | 91.07 |
Vision Transformer | 95.64 | 97.51 | 96.34 | 88.69 | 98.26 | 92.30 | 97.50 | 86.49 | 94.93 |
VAN | 100.00 | 98.67 | 100.00 | 95.89 | 98.64 | 97.72 | 98.01 | 93.78 | 98.27 |
CIR-Net | 96.52 | 97.08 | 98.58 | 85.70 | 96.17 | 90.23 | 97.16 | 80.54 | 94.08 |
SIATE-Net | 99.04 | 98.67 | 100.00 | 97.30 | 98.68 | 97.55 | 98.91 | 95.92 | 98.51 |
Table 8 Comparison of different models’ performance on short chromosome classes in the ds2 dataset/%
模型 | 短小染色体F1-score | ||||||||
---|---|---|---|---|---|---|---|---|---|
c16 | c17 | c18 | c19 | c20 | c21 | c22 | cY | avg | |
VGG | 94.55 | 93.87 | 91.13 | 89.92 | 89.36 | 90.98 | 91.74 | 79.06 | 91.31 |
ResNet | 96.13 | 95.28 | 92.46 | 86.74 | 90.15 | 91.27 | 92.68 | 88.95 | 92.97 |
DenseNet | 95.64 | 96.30 | 95.64 | 89.58 | 92.74 | 93.68 | 95.87 | 70.06 | 93.44 |
Xception | 92.19 | 94.76 | 95.11 | 85.67 | 89.33 | 90.04 | 91.63 | 85.00 | 91.07 |
Vision Transformer | 95.64 | 97.51 | 96.34 | 88.69 | 98.26 | 92.30 | 97.50 | 86.49 | 94.93 |
VAN | 100.00 | 98.67 | 100.00 | 95.89 | 98.64 | 97.72 | 98.01 | 93.78 | 98.27 |
CIR-Net | 96.52 | 97.08 | 98.58 | 85.70 | 96.17 | 90.23 | 97.16 | 80.54 | 94.08 |
SIATE-Net | 99.04 | 98.67 | 100.00 | 97.30 | 98.68 | 97.55 | 98.91 | 95.92 | 98.51 |
[1] | XIAO L, LUO C L. DEEPACC: automate chromosome classification based on metaphase images using deep learning framework fused with Priori knowledge[C]// 2021 18th International Symposium on Biomedical Imaging. New York: IEEE Press, 2021: 607-610. |
[2] | LIN C C, ZHAO G S, YIN A H, et al. A novel chromosome cluster types identification method using ResNeXt WSL model[J]. Medical Image Analysis, 2021, 69: 101943. |
[3] |
HU X, YI W L, JIANG L, et al. Classification of metaphase chromosomes using deep convolutional neural network[J]. Journal of Computational Biology, 2019, 26(5): 473-484.
DOI PMID |
[4] | 张林, 易先鹏, 王广杰, 等. 基于网格重构学习的染色体分类模型[EB/OL]. [2024-01-23]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c210303. |
ZHANG L, YI X P,. WANG G J, et al. A grid reconstruction learning model for chromosome classification[EB/OL]. [2024-01-23]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c210303 (in Chinese). | |
[5] |
QIN Y L, WEN J, ZHENG H, et al. Varifocal-Net: a chromosome classification approach using deep convolutional networks[J]. IEEE Transactions on Medical Imaging, 2019, 38(11): 2569-2581.
DOI PMID |
[6] | SHARMA M, SAHA O, SRIRAMAN A, et al. Crowdsourcing for chromosome segmentation and deep classification[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 786-793. |
[7] | ZHANG W B, SONG S F, BAI T M, et al. Chromosome classification with convolutional neural network based deep learning[C]// 2018 11th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics. New York: IEEE Press, 2018: 1-5. |
[8] | REMYA R S, HARIHARAN S, VINOD V, et al. A comprehensive study on convolutional neural networks for chromosome classification[C]// 2020 Advanced Computing and Communication Technologies for High Performance Applications. New York: IEEE Press, 2020: 287-292. |
[9] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[10] |
翟进有, 代冀阳, 王嘉琦, 等. 深度残差网络的无人机多目标识别[J]. 图学学报, 2019, 40(1): 158-164.
DOI |
ZHAI J Y, DAI J Y, WANG J Q, et al. Multi-objective identification of UAV based on deep residual network[J]. Journal of Graphics, 2019, 40(1): 158-164 (in Chinese). | |
[11] | 易序晟, 尹爱华, 黄杰晟, 等. 深度学习下主流染色体分类算法的性能评估[J]. 中国图象图形学报, 2023, 28(2): 570-588. |
YI X S, YIN A H, HUANG J S, et al. Performance evaluation of mainstream chromosome recognition algorithms under deep learning[J]. Journal of Image and Graphics, 2023, 28(2): 570-588 (in Chinese). | |
[12] | 张成成, 宋婕萍, 徐淑琴, 等. 基于深度卷积神经网络对中期染色体分类的应用研究[J]. 中国临床新医学, 2020, 13(2): 123-126. |
ZHANG C C, SONG J P, XU S Q, et al. Application research on classification of metaphase chromosomes based on deep convolutional neural networks[J]. Chinese Journal of New Clinical Medicine, 2020, 13(2): 123-126 (in Chinese). | |
[13] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2818-2826. |
[14] | 李妮妮, 王夏黎, 付阳阳, 等. 一种优化YOLO模型的交通警察目标检测方法[J]. 图学学报, 2022, 43(2): 296-305. |
LI N N, WANG X L, FU Y Y, et al. A traffic police object detection method based on optimized YOLO model[J]. Journal of Graphics, 2022, 43(2): 296-305 (in Chinese).
DOI |
|
[15] | LIN C C, ZHAO G S, YANG Z R, et al. CIR-Net: automatic classification of human chromosome based on inception-resnet architecture[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(3): 1285-1293. |
[16] | LIU X B, FU L J, LIN J C W, et al. SRAS-Net: low-resolution chromosome image classification based on deep learning[J]. IET Systems Biology, 2022, 16(3/4): 85-97. |
[17] | MCGOWAN-JORDAN J, SIMONS A, SCHMID M. ISCN 2016: an international system for human cytogenomic nomenclature[M]. Basel: Karger, 2016: 8-10. |
[18] | HERNÁNDEZ-MIER Y, NUÑO-MAGANDA M A, POLANCO-MARTAGÓN S, et al. Machine learning classifiers evaluation for automatic karyogram generation from G-banded metaphase images[J]. Applied Sciences, 2020, 10(8): 2758. |
[19] |
GU Z W, CHENG J, FU H Z, et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292.
DOI PMID |
[20] | WANG G J, LIU H, YI X P, et al. ARMS Net: overlapping chromosome segmentation based on adaptive receptive field multi-scale network[J]. Biomedical Signal Processing and Control, 2021, 68: 102811. |
[21] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-03-07]. https://dblp.uni-trier.de/rec/conf/iclr/DosovitskiyB0WZ21.html?view=bibtex. |
[22] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[23] |
杨陈成, 董秀成, 侯兵, 等. 基于参考的Transformer纹理迁移深度图像超分辨率重建[J]. 图学学报, 2023, 44(5): 861-867.
DOI |
YANG C C, DONG X C, HOU B, et al. Reference based transformer texture migrates depth images super resolution reconstruction[J]. Journal of Graphics, 2023, 44(5): 861-867 (in Chinese). | |
[24] |
陈静, 杨学志, 陈鲸, 等. 采用自注意力抗干扰网络的视频房颤检测[J]. 图学学报, 2023, 44(2): 313-323.
DOI |
CHEN J, YANG X Z, CHEN J,, et al. Video atrial fibrillation detection using self-attentional anti-interference network[J]. Journal of Graphics, 2023, 44(2): 313-323 (in Chinese).
DOI |
|
[25] |
朱光辉, 缪君, 胡宏利, 等. 基于自增强注意力机制的室内单图像分段平面三维重建[J]. 图学学报, 2024, 45(3): 464-471.
DOI |
ZHU G H, MIAO J, HU H L, et al. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism[J]. Journal of Image and Graphics, 2024, 45(3): 464-471 (in Chinese). | |
[26] | RAHIMZADEH M, PARVIN S, ASKARI A, et al. Wise-SrNet: a novel architecture for enhancing image classification by learning spatial resolution of feature maps[J]. Pattern Analysis and Applications, 2024, 27(2): 30. |
[27] | 张运波, 易鹏飞, 周东生, 等. 深度可分离卷积和标准卷积相结合的高效行人检测器[J]. 图学学报, 2022, 43(2): 230-238. |
ZHANG Y B, YI P F, ZHOU D S, et al. Efficient pedestrian detector combining depthwise separable convolution and standard convolution[J]. Journal of Graphics, 2022, 43(2): 230-238 (in Chinese). | |
[28] | 刘南杉, 裴云强, 蒋皓, 等. 基于VD-MobileNet网络的WebAR生活垃圾分类信息可视化方法[J]. 图学学报, 2022, 43(4): 667-676. |
LIU N S, PEI Y Q, JIANG H, et al. WebAR garbage classification information visualization method based on VD-MobileNet network[J]. Journal of Graphics, 2022, 43(4): 667-676 (in Chinese). | |
[29] |
毛爱坤, 刘昕明, 陈文壮, 等. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455.
DOI |
MAO A K, LIU X M, CHEN W Z, et al. Improved substation instrument target detection method for YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(3): 448-455 (in Chinese). | |
[30] | ZHU L Y, JI D Y, ZHU S P, et al. Learning statistical texture for semantic segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 12532-12541. |
[31] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1-9. |
[32] | FAN D P, JI G P, SUN G L, et al. Camouflaged object detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2774-2784. |
[33] | ZHAO H Q, ZHOU W B, CHEN D D, et al. Multi-attentional deepfake detection[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2185-2194. |
[1] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[2] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
[3] | CHANG Dong-liang , YIN Jun-hui , XIE Ji-yang , SUN Wei-ya , MA Zhan-yu. Attention-guided Dropout for image classification [J]. Journal of Graphics, 2021, 42(1): 32-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||