Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 335-345.DOI: 10.11996/JG.j.2095-302X.2023020335
Previous Articles Next Articles
CAO Yi-qin1(), WU Ming-lin1, XU Lu2
Received:
2022-06-17
Accepted:
2022-10-07
Online:
2023-04-30
Published:
2023-05-01
About author:
CAO Yi-qin (1964-), professor, master. His main research interests cover digital image processing and pattern recognition. E-mail:yqcao@ecjtu.edu.cn
Supported by:
CLC Number:
CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020335
类别 | 个数 |
---|---|
CR | 479 |
IN | 741 |
PA | 649 |
PS | 292 |
RS | 435 |
SC | 395 |
Table 1 Label distribution of the training dataset
类别 | 个数 |
---|---|
CR | 479 |
IN | 741 |
PA | 649 |
PS | 292 |
RS | 435 |
SC | 395 |
名称 | 参数 |
---|---|
GPU | RTX3060Ti-12 G |
CPU | Intel(R) Core(TM) i7-10875H CPU @2.30 GHz |
操作系统 | Windows10 |
深度学习框架 | Pytorch 1.9.1+cuda10.2 |
编译软件 | PyCharm |
Table 2 The hardware and software configuration of the experimental environment
名称 | 参数 |
---|---|
GPU | RTX3060Ti-12 G |
CPU | Intel(R) Core(TM) i7-10875H CPU @2.30 GHz |
操作系统 | Windows10 |
深度学习框架 | Pytorch 1.9.1+cuda10.2 |
编译软件 | PyCharm |
算法 | mAP | FPS | Params (M) |
---|---|---|---|
SSD | 0.507 | 63.30 | 24.4 |
Cascade R-CNN | 0.596 | 37.00 | 107.0 |
RetinaNet | 0.617 | 42.85 | 28.5 |
YOLOv3 | 0.655 | 55.00 | 63.0 |
文献[16] | 0.676 | 51.60 | - |
YOLOX(s) | 0.695 | 102.00 | 9.0 |
YOLOX(m) | 0.701 | 87.90 | 25.3 |
YOLOv5(m) | 0.707 | 75.10 | 21.2 |
本文 | 0.741 | 75.00 | 23.9 |
YOLOv6(s) | 0.706 | 121.00 | 17.2 |
YOLOv7(tiny) | 0.735 | 165.00 | 6.2 |
YOLOv7 | 0.768 | 138.00 | 36.9 |
Table 3 Comparative experimental results
算法 | mAP | FPS | Params (M) |
---|---|---|---|
SSD | 0.507 | 63.30 | 24.4 |
Cascade R-CNN | 0.596 | 37.00 | 107.0 |
RetinaNet | 0.617 | 42.85 | 28.5 |
YOLOv3 | 0.655 | 55.00 | 63.0 |
文献[16] | 0.676 | 51.60 | - |
YOLOX(s) | 0.695 | 102.00 | 9.0 |
YOLOX(m) | 0.701 | 87.90 | 25.3 |
YOLOv5(m) | 0.707 | 75.10 | 21.2 |
本文 | 0.741 | 75.00 | 23.9 |
YOLOv6(s) | 0.706 | 121.00 | 17.2 |
YOLOv7(tiny) | 0.735 | 165.00 | 6.2 |
YOLOv7 | 0.768 | 138.00 | 36.9 |
算法 | mAP | FPS |
---|---|---|
YOLOv5s | 0.840 | 96.2 |
本文(s) | 0.881 | 96.3 |
YOLOv5m | 0.892 | 75.1 |
本文(m) | 0.919 | 75.0 |
YOLOv5l | 0.923 | 61.6 |
本文(l) | 0.936 | 61.4 |
YOLOv5x | 0.945 | 51.9 |
本文(x) | 0.959 | 51.6 |
Table 4 Experimental results of the YOLOv5 algorithm of different sizes on the VOC2012 dataset
算法 | mAP | FPS |
---|---|---|
YOLOv5s | 0.840 | 96.2 |
本文(s) | 0.881 | 96.3 |
YOLOv5m | 0.892 | 75.1 |
本文(m) | 0.919 | 75.0 |
YOLOv5l | 0.923 | 61.6 |
本文(l) | 0.936 | 61.4 |
YOLOv5x | 0.945 | 51.9 |
本文(x) | 0.959 | 51.6 |
SPP_Res | C3_MHSA | 多层融合 | AP | mAP | |||||
---|---|---|---|---|---|---|---|---|---|
CR | IN | PA | PS | RS | SC | ||||
- | - | - | 0.225 | 0.848 | 0.888 | 0.780 | 0.631 | 0.869 | 0.707 |
√ | - | - | 0.248 | 0.853 | 0.891 | 0.782 | 0.628 | 0.872 | 0.712 |
- | √ | - | 0.284 | 0.862 | 0.911 | 0.809 | 0.639 | 0.881 | 0.731 |
- | - | √ | 0.303 | 0.856 | 0.893 | 0.795 | 0.633 | 0.876 | 0.726 |
√ | √ | - | 0.298 | 0.863 | 0.915 | 0.815 | 0.641 | 0.882 | 0.735 |
√ | - | √ | 0.315 | 0.869 | 0.894 | 0.799 | 0.639 | 0.881 | 0.733 |
- | √ | √ | 0.314 | 0.861 | 0.911 | 0.819 | 0.642 | 0.883 | 0.738 |
√ | √ | √ | 0.323 | 0.873 | 0.896 | 0.827 | 0.643 | 0.884 | 0.741 |
Table 5 Ablation study experiments with improved strategies
SPP_Res | C3_MHSA | 多层融合 | AP | mAP | |||||
---|---|---|---|---|---|---|---|---|---|
CR | IN | PA | PS | RS | SC | ||||
- | - | - | 0.225 | 0.848 | 0.888 | 0.780 | 0.631 | 0.869 | 0.707 |
√ | - | - | 0.248 | 0.853 | 0.891 | 0.782 | 0.628 | 0.872 | 0.712 |
- | √ | - | 0.284 | 0.862 | 0.911 | 0.809 | 0.639 | 0.881 | 0.731 |
- | - | √ | 0.303 | 0.856 | 0.893 | 0.795 | 0.633 | 0.876 | 0.726 |
√ | √ | - | 0.298 | 0.863 | 0.915 | 0.815 | 0.641 | 0.882 | 0.735 |
√ | - | √ | 0.315 | 0.869 | 0.894 | 0.799 | 0.639 | 0.881 | 0.733 |
- | √ | √ | 0.314 | 0.861 | 0.911 | 0.819 | 0.642 | 0.883 | 0.738 |
√ | √ | √ | 0.323 | 0.873 | 0.896 | 0.827 | 0.643 | 0.884 | 0.741 |
[1] | MAO T Q, REN L R, YUAN F Q, et al. Defect recognition method based on HOG and SVM for drone inspection images of power transmission line[C]// 2019 International Conference on High Performance Big Data and Intelligent Systems. New York: IEEE Press, 2019: 254-257. |
[2] |
CHU M X, GONG R F, GAO S, et al. Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 140-150.
DOI URL |
[3] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[4] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 1440-1448. |
[5] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[7] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[8] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2022-05-17]. https://arxiv.org/abs/1804.02767. |
[9] |
FU G Z, SUN P Z, ZHU W B, et al. A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121: 397-405.
DOI URL |
[10] | LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors: Basel, Switzerland, 2020, 20(6): 1562. |
[11] | VANNOCCI M, RITACCO A, CASTELLANO A, et al. Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks[M]// Advances in Computational Intelligence. Cham: Springer International Publishing, 2019: 220-234. |
[12] | HAN C J, LI G Y, LIU Z. Two-stage edge reuse network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. |
[13] | 王海云, 王剑平, 罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术, 2021, 40(2) : 262-269. |
WANG H Y, WANG J P, LUO F H. Study on surface defect detection of metal sheet and strip using faster R-CNN with multilevel feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269. (in Chinese) | |
[14] | 代小红, 陈华江, 朱超平. 一种基于改进Faster RCNN的金属材料工件表面缺陷检测与实现研究[J]. 表面技术, 2020, 49(10): 362-371. |
DAI X H, CHEN H J, ZHU C P. Surface defect detection and realization of metal workpiece based on improved faster RCNN[J]. Surface Technology, 2020, 49(10): 362-371. (in Chinese) | |
[15] | LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51(21): 76-81. |
[16] |
程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.
DOI |
CHENG J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258. (in Chinese)
DOI |
|
[17] |
KOU X P, LIU S J, CHENG K Q, et al. Development of a YOLO-V3-based model for detecting defects on steel strip surface[J]. Measurement, 2021, 182: 109454.
DOI URL |
[18] |
王杨, 曹铁勇, 杨吉斌, 等. 基于YOLO v5算法的迷彩伪装目标检测技术研究[J]. 计算机科学, 2021, 48(10): 226-232.
DOI |
WANG Y, CAO T Y, YANG J B, et al. Camouflaged object detection based on improved YOLO v5 algorithm[J]. Computer Science, 2021, 48(10): 226-232. (in Chinese)
DOI |
|
[19] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[20] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[21] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[22] | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[EB/OL]. [2022-05-17]. 1906. 05909. https://arxiv.org/abs/1906.05909. |
[23] | ZHAO H S, JIA J Y, KOLTUN V. Exploring self-attention for image recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10073-10082. |
[24] | SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 16514-16524. |
[25] | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang.
Multi-class defect target detection method for transmission lines
based on TR-YOLOv5
[J]. Journal of Graphics, 2023, 44(4): 667-676.
|
[3] |
CAO Yi-qin , ZHOU Yi-wei , XU Lu.
A real-time metallic surface defect detection algorithm based on E-YOLOX
[J]. Journal of Graphics, 2023, 44(4): 677-690.
|
[4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[5] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[6] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[7] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
[8] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. |
[9] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[10] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
[11] | ZHAO Lu-lu , WANG Xue-ying , ZHANG Yi , ZHANG Mei-yue. Vehicle target detection based on YOLOv5s fusion SENet [J]. Journal of Graphics, 2022, 43(5): 776-782. |
[12] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[13] | HU Hai-tao , DU Hao-chen , WANG Su-qin , SHI Min , ZHU Deng-ming, . Improved YOLOX method for detecting surface defects of drug blister aluminum foil [J]. Journal of Graphics, 2022, 43(5): 803-814. |
[14] | HE Guo-zhong, LIANG Yu. PCB defect detection based on convolutional neural network [J]. Journal of Graphics, 2022, 43(1): 21-27. |
[15] | DU Chao, LIU Gui-hua . Improved VGG Neural Network Applied to Defect Detection of Diode Glass Bulb Image [J]. Journal of Graphics, 2019, 40(6): 1087-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||