Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 1030-1039.DOI: 10.11996/JG.j.2095-302X.2024051030
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
Received:
2024-07-04
Revised:
2024-08-10
Online:
2024-10-31
Published:
2024-10-31
Contact:
SONG Ying
About author:
First author contact:ZHU Jie (1998-), master student. His main research interest covers photorealistic graphics. E-mail:1904867640@qq.com
Supported by:
CLC Number:
ZHU Jie, SONG Ying. A free viewpoint synthesis method based on differentiable rendering[J]. Journal of Graphics, 2024, 45(5): 1030-1039.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024051030
名称 | 规格或型号 |
---|---|
CPU | Intel(R) Xeon(R) Gold 6226R CPU @2.90 GHz |
GPU | NVIDIA GeForce RTX 3090 24 GB |
操作系统 | Ubuntu 20.04.1 LTS |
Pytorch | 1.13.1 |
NVDIFFRAST | 0.3.1 |
Tiny-cuda-nn | 1.7 |
Table 1 Experimental environment
名称 | 规格或型号 |
---|---|
CPU | Intel(R) Xeon(R) Gold 6226R CPU @2.90 GHz |
GPU | NVIDIA GeForce RTX 3090 24 GB |
操作系统 | Ubuntu 20.04.1 LTS |
Pytorch | 1.13.1 |
NVDIFFRAST | 0.3.1 |
Tiny-cuda-nn | 1.7 |
名称 | 数值 |
---|---|
lr_pos | 3e-2 |
lr_material | 1e-2 |
lr_light | 1e-2 |
lr_pose | 5e-3 |
lr_intrinsic | 1e-2 |
lr_exposure | 1e-4 |
Table 2 Learning rate settings
名称 | 数值 |
---|---|
lr_pos | 3e-2 |
lr_material | 1e-2 |
lr_light | 1e-2 |
lr_pose | 5e-3 |
lr_intrinsic | 1e-2 |
lr_exposure | 1e-4 |
场景 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
GoldCape(NVDIFFREC) | 24.027 | 0.857 | 0.110 |
GoldCape(Ours) | 23.128 | 0.824 | 0.133 |
EthiopianHead(NVDIFFREC) | 25.738 | 0.915 | 0.109 |
EthiopianHead(Ours) | 25.854 | 0.923 | 0.096 |
Gnome(NVDIFFREC) | 15.699 | 0.783 | 0.217 |
Gnome(Ours) | 24.185 | 0.863 | 0.143 |
Statue(NVDIFFREC) | 18.464 | 0.820 | 0.187 |
Statue(Ours) | 20.746 | 0.845 | 0.162 |
MotherChild(NVDIFFREC) | 17.369 | 0.914 | 0.121 |
MotherChild(Ours) | 27.665 | 0.954 | 0.061 |
Table 3 Quantitative comparisons with NVDIFFREC per scene
场景 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
GoldCape(NVDIFFREC) | 24.027 | 0.857 | 0.110 |
GoldCape(Ours) | 23.128 | 0.824 | 0.133 |
EthiopianHead(NVDIFFREC) | 25.738 | 0.915 | 0.109 |
EthiopianHead(Ours) | 25.854 | 0.923 | 0.096 |
Gnome(NVDIFFREC) | 15.699 | 0.783 | 0.217 |
Gnome(Ours) | 24.185 | 0.863 | 0.143 |
Statue(NVDIFFREC) | 18.464 | 0.820 | 0.187 |
Statue(Ours) | 20.746 | 0.845 | 0.162 |
MotherChild(NVDIFFREC) | 17.369 | 0.914 | 0.121 |
MotherChild(Ours) | 27.665 | 0.954 | 0.061 |
方法 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRD | 22.508 | 0.829 | 0.159 |
NeROIC | 25.776 | 0.892 | 0.132 |
NVDIFFREC | 20.259 | 0.858 | 0.149 |
Ours | 24.316 | 0.882 | 0.119 |
Table 4 Quantitative comparisons of real-world scenes
方法 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRD | 22.508 | 0.829 | 0.159 |
NeROIC | 25.776 | 0.892 | 0.132 |
NVDIFFREC | 20.259 | 0.858 | 0.149 |
Ours | 24.316 | 0.882 | 0.119 |
方法 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRD | 25.573 | 0.895 | 0.116 |
NVDIFFREC | 26.046 | 0.936 | 0.083 |
Ours | 25.580 | 0.926 | 0.103 |
Table 5 Quantitative comparisons of synthetic scenes
方法 | PSNR↑ | SSIM↑ | LPIPS↓ |
---|---|---|---|
NeRD | 25.573 | 0.895 | 0.116 |
NVDIFFREC | 26.046 | 0.936 | 0.083 |
Ours | 25.580 | 0.926 | 0.103 |
[1] | MUNKBERG J, CHEN W Z, HASSELGREN J, et al. Extracting triangular 3D models, materials, and lighting from images[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8270-8280. |
[2] | HORRY Y, ANJYO K I, ARAI K. Tour into the picture: using a spidery mesh interface to make animation from a single image[C]// The 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1997: 225-232. |
[3] | OH B M, CHEN M, DORSEY J, et al. Image-based modeling and photo editing[C]// The 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 433-442. |
[4] | ZHANG L, DUGAS-PHOCION G, SAMSON J S, et al. Single-view modelling of free-form scenes[J]. The Journal of Visualization and Computer Animation, 2002, 13(4): 225-235. |
[5] | KHOLGADE N, SIMON T, EFROS A, et al. 3D object manipulation in a single photograph using stock 3D models[J]. ACM Transactions on graphics (TOG), 2014, 33(4): 127. |
[6] | MCMILLAN L. An image-based approach to three-dimensional computer graphics[M]. Chapel Hill: University of North Carolina at Chapel Hill, 1997: 30-59. |
[7] | SUTHERLAND I E, SPROULL R F, SCHUMACKER R A. A characterization of ten hidden-surface algorithms[J]. ACM Computing Surveys (CSUR), 1974, 6(1): 1-55. |
[8] | LEE P J, EFFENDI . Nongeometric distortion smoothing approach for depth map preprocessing[J]. IEEE Transactions on Multimedia, 2011, 13(2): 246-254. |
[9] | CHEN S E, WILLIAMS L. View interpolation for image synthesis[C]// The 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1993: 279-288. |
[10] | 杨金钟, 刘政凯, 俞能海, 等. 基于控制点的图象变形方法及其应用[J]. 中国图象图形学报, 2001, 6A(11): 1070-1074. |
YANG J Z, LIU Z K, YU N H, et al. An image warping method based on control points and its applications[J]. Journal of Image and Graphics, 2001, 6A(11): 1070-1074 (in Chinese). | |
[11] | CHEN S E. QuickTime VR: an image-based approach to virtual environment navigation[C]// The 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 29-38. |
[12] | SHUM H Y, HE L W. Rendering with concentric mosaics[C]// The 26th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1999: 299-306. |
[13] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// The 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014: 2672-2680. |
[14] |
成欢, 王硕, 李孟, 等. 面向自动驾驶场景的神经辐射场综述[J]. 图学学报, 2023, 44(6): 1091-1103.
DOI |
CHENG H, WANG S, LI M, et al. A review of neural radiance field for autonomous driving scene[J]. Journal of Graphics, 2023, 44(6): 1091-1103 (in Chinese).
DOI |
|
[15] |
王稚儒, 常远, 鲁鹏, 等. 神经辐射场加速算法综述[J]. 图学学报, 2024, 45(1): 1-13.
DOI |
WANG Z R, CHANG Y, LU P, et al. A review on neural radiance fields acceleration[J]. Journal of Graphics, 2024, 45(1): 1-13 (in Chinese).
DOI |
|
[16] | CHOI J, JUNG D, LEE T, et al. TMO: textured mesh acquisition of objects with a mobile device by using differentiable rendering[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16674-16684. |
[17] | WU T, WANG J Q, PAN X G, et al. Voxurf: voxel-based efficient and accurate neural surface reconstruction[EB/OL]. (2023-08-13) [2024-06-06]. https://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#WuWPXTLL23. |
[18] | XU Q G, XU Z X, PHILIP J, et al. Point-neRF: point-based neural radiance fields[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5428-5438. |
[19] | HU T, XU X G, LIU S, et al. Point2pix: photo-realistic point cloud rendering via neural radiance fields[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8349-8358. |
[20] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. |
[21] | RÜCKERT D, FRANKE L, STAMMINGER M. ADOP: approximate differentiable one-pixel point rendering[J]. ACM Transactions on Graphics (TOG), 2022, 41(4): 99. |
[22] | MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4455-4465. |
[23] | FENG Q, LIU Y B, LAI Y K, et al. FOF: learning fourier occupancy field for monocular real-time human reconstruction[C]// The 36th International Conference on Neural Information Processing Systems. New York: ACM, 2022: 537. |
[24] | JIANG H C, XU Y M, ZENG Y H, et al. OpenOcc: open vocabulary 3D scene reconstruction via occupancy representation[EB/OL]. (2024-05-18) [2024-06-06]. https://arxiv.org/abs/2403.11796. |
[25] | SHIM J, KANG C, JOO K. Diffusion-based signed distance fields for 3D shape generation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 20887-20897. |
[26] | YENAMANDRA T, TEWARI A, YANG N, et al. FIRe: fast inverse rendering using directional and signed distance functions[C]// IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2024: 3065-3075. |
[27] | LIU W X, WU Y W, RUAN S P, et al. Marching-primitives: shape abstraction from signed distance function[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8771-8780. |
[28] | SHEN T C, GAO J, YIN K X, et al. Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis[C]// The 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 466. |
[29] | LAINE S, HELLSTEN J, KARRAS T, et al. Modular primitives for high-performance differentiable rendering[J]. ACM Transactions on Graphics (TOG), 2020, 39(6): 194. |
[30] |
ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
DOI PMID |
[31] | RÜCKERT D, STAMMINGER M. Snake-SLAM: efficient global visual inertial SLAM using decoupled nonlinear optimization[C]// 2021 International Conference on Unmanned Aircraft Systems. New York: IEEE Press, 2021: 219-228. |
[32] | BOSS M, BRAUN R, JAMPANI V, et al. Nerd: neural reflectance decomposition from image collections[C]// IEEE/ CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 12664-12674. |
[33] | KUANG Z F, OLSZEWSKI K, CHAI M L, et al. NeROIC: neural rendering of objects from online image collections[J]. ACM Transactions on Graphics (TOG), 2022, 41(4): 56. |
[1] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[2] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[3] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[4] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[5] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[6] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
[7] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[8] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[9] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[10] | ZHANG Chen-yang, CAO Yan-hua, YANG Xiao-zhong. Multi-focus image fusion method based on fractional wavelet combined with guided filtering [J]. Journal of Graphics, 2023, 44(1): 77-87. |
[11] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[12] | ZHU Tian-xiao, YAN Feng-ting, SHI Zhi-cai. Regional hierarchical mesh simplification algorithm for feature retention [J]. Journal of Graphics, 2023, 44(3): 570-578. |
[13] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||