Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 28-34.DOI: 10.11996/JG.j.2095-302X.2025010028
• Image Processing and Computer Vision • Previous Articles Next Articles
WANG Zhidong1(), CHEN Chenyang2, LIU Xiaoming2
Received:
2024-08-06
Accepted:
2024-10-17
Online:
2025-02-28
Published:
2025-02-14
About author:
First author contact:WANG Zhidong (1978-), senior engineer, master. His main research interests cover graphic image processing, power system automation, etc. E-mail:wangzhidong@js.sgcc.com.cn
CLC Number:
WANG Zhidong, CHEN Chenyang, LIU Xiaoming. The defect detection method for communication optical cables based on lightweight improved YOLOv8[J]. Journal of Graphics, 2025, 46(1): 28-34.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010028
Model | mAP50/% | mAP50-95/% | GFLOPs | Params/M |
---|---|---|---|---|
YOLOv8n | 84.1 | 48.5 | 8.1 | 3.01 |
YOLOv8s | 88.4 | 52.3 | 28.4 | 11.14 |
YOLOv8m | 90.1 | 55.1 | 78.7 | 25.86 |
Table 1 Comparison of model performance of different models of YOLOv8
Model | mAP50/% | mAP50-95/% | GFLOPs | Params/M |
---|---|---|---|---|
YOLOv8n | 84.1 | 48.5 | 8.1 | 3.01 |
YOLOv8s | 88.4 | 52.3 | 28.4 | 11.14 |
YOLOv8m | 90.1 | 55.1 | 78.7 | 25.86 |
A | B | C | mAP50/% | mAP50-95/% | GFLOPs | Params/M | Speed/ms |
---|---|---|---|---|---|---|---|
Baseline | 84.1 | 48.5 | 8.1 | 3.01 | 2.1 | ||
√ | 84.5 | 49.4 | 8.0 | 3.03 | 1.5 | ||
√ | 86.0 | 49.7 | 6.9 | 1.93 | 1.8 | ||
√ | 84.9 | 49.0 | 8.1 | 3.01 | 2.4 | ||
√ | √ | 86.4 | 50.3 | 6.8 | 1.96 | 2.2 | |
√ | √ | 85.4 | 49.5 | 8.0 | 3.03 | 2.3 | |
√ | √ | 85.9 | 50.3 | 6.9 | 1.93 | 1.6 | |
√ | √ | √ | 87.8 | 50.6 | 6.8 | 1.96 | 2.1 |
Table 2 Ablation experiments
A | B | C | mAP50/% | mAP50-95/% | GFLOPs | Params/M | Speed/ms |
---|---|---|---|---|---|---|---|
Baseline | 84.1 | 48.5 | 8.1 | 3.01 | 2.1 | ||
√ | 84.5 | 49.4 | 8.0 | 3.03 | 1.5 | ||
√ | 86.0 | 49.7 | 6.9 | 1.93 | 1.8 | ||
√ | 84.9 | 49.0 | 8.1 | 3.01 | 2.4 | ||
√ | √ | 86.4 | 50.3 | 6.8 | 1.96 | 2.2 | |
√ | √ | 85.4 | 49.5 | 8.0 | 3.03 | 2.3 | |
√ | √ | 85.9 | 50.3 | 6.9 | 1.93 | 1.6 | |
√ | √ | √ | 87.8 | 50.6 | 6.8 | 1.96 | 2.1 |
Model | mAP50/% | mAP50-95/% | GFLOPs | Params/M | FPS |
---|---|---|---|---|---|
YOLOv3-tiny | 81.8 | 44.8 | 18.9 | 12.10 | 18.9 |
YOLOv5n | 83.4 | 47.2 | 7.1 | 2.50 | 19.4 |
YOLOv6n | 83.9 | 46.8 | 11.9 | 4.20 | 23.1 |
YOLOv8n | 84.1 | 48.5 | 8.1 | 3.01 | 20.1 |
YOLOv9t | 84.0 | 48.1 | 7.9 | 2.00 | 14.0 |
YOLOv10n | 82.9 | 47.4 | 8.4 | 2.70 | 20.3 |
Gold-YOLO | 84.6 | 48.2 | 10.2 | 5.90 | 15.9 |
RT-DETR | 87.5 | 49.5 | 125.6 | 41.90 | 4.5 |
Ours | 87.8 | 50.6 | 6.8 | 1.96 | 19.1 |
Table 3 Comparative experiments
Model | mAP50/% | mAP50-95/% | GFLOPs | Params/M | FPS |
---|---|---|---|---|---|
YOLOv3-tiny | 81.8 | 44.8 | 18.9 | 12.10 | 18.9 |
YOLOv5n | 83.4 | 47.2 | 7.1 | 2.50 | 19.4 |
YOLOv6n | 83.9 | 46.8 | 11.9 | 4.20 | 23.1 |
YOLOv8n | 84.1 | 48.5 | 8.1 | 3.01 | 20.1 |
YOLOv9t | 84.0 | 48.1 | 7.9 | 2.00 | 14.0 |
YOLOv10n | 82.9 | 47.4 | 8.4 | 2.70 | 20.3 |
Gold-YOLO | 84.6 | 48.2 | 10.2 | 5.90 | 15.9 |
RT-DETR | 87.5 | 49.5 | 125.6 | 41.90 | 4.5 |
Ours | 87.8 | 50.6 | 6.8 | 1.96 | 19.1 |
[1] | 许一帆, 高文焕, 龙水铨. 全介质自承式光缆ADSS支架的设计[J]. 集成电路应用, 2023, 40(7): 288-290. |
XU Y F, GAO W H, LONG S Q. Design of ADSS bracket for all dielectric self-supporting optical cables[J]. Application of IC, 2023, 40(7): 288-290 (in Chinese). | |
[2] | 杨绍哲, 纪萍, 刘喜军, 等. 全介质自承式光缆电腐蚀预防机制有限元分析[J]. 上海电气技术, 2023, 16(1): 37-43. |
YANG S Z, JI P, LIU X J, et al. Finite element analysis of electrical corrosion prevention mechanism of ADSS optical cable[J]. Journal of Shanghai Electric Technology, 2023, 16(1): 37-43 (in Chinese). | |
[3] | 郑建军, 刘俊, 史贤达, 等. 在运ADSS光缆断裂原因分析[J]. 黑龙江电力, 2021, 43(5): 391-393. |
ZHANG J J, LIU J, SHI X D, et al. Cause analysis of ADSS optical cable fracture in operation[J]. Heilongjiang Electric Power, 2021, 43(5): 391-393 (in Chinese). | |
[4] | DU B X. Discharge energy and dc tracking resistance of organic insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 897-901. |
[5] | 蔡嘉磊, 茅智慧, 李君, 等. 基于深度学习的目标检测算法与应用综述[J]. 网络安全技术与应用, 2023(11): 41-45. |
CAI J L, MAO Z H, LI J, et al. A review of deep learning based target detection algorithms and applications[J]. Network Security Technology & Application, 2023(11): 41-45 (in Chinese). | |
[6] | CHEN X H, LIU N, YOU B, et al. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance[J]. Infrared Physics & Technology, 2016, 77: 456-463. |
[7] | QU L Q, MU H B, ZOU X Y, et al. A method for online monitoring intermittent cable defects based on SSTDR[J]. Energy Reports, 2023, 9: 904-911. |
[8] | WANG S R, CHU J W, SU X, et al. Cable defect detection technology based on low frequency method and damped oscillation wave[C]// The 3rd International Academic Exchange Conference on Science and Technology Innovation. New York: IEEE Press, 2021: 1717-1720 |
[9] | TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776. |
[10] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
[11] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[12] | MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2024-04-26]. https://arxiv.org/abs/2307.07662. |
[13] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 764-773. |
[14] | ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9300-9308. |
[15] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[16] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[17] |
熊举举, 徐杨, 范润泽, 等. 基于轻量化视觉Transformer的花卉识别[J]. 图学学报, 2023, 44(2): 271-279.
DOI |
XIONG J J, XU Y, FAN R Z, et al. Flowers recognition based on lightweight visual transformer[J]. Journal of Graphics, 2023, 44(2): 271-279 (in Chinese).
DOI |
[1] | ZHAO Zhenbing, HAN Yu, TANG Chenkang. Cascade detection method for insulator defects in distribution lines based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 1-12. |
[2] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[3] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[4] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[5] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[6] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[7] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[8] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[9] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[10] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[11] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[12] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[13] | YUAN Chao, ZHAO Yadong, ZHANG Yao, WANG Jiaxuan, XU Dawei, ZHAI Yongjie, ZHU Songsong. Lightweight multi-modal pedestrian detection algorithm based on YOLO [J]. Journal of Graphics, 2024, 45(1): 35-46. |
[14] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[15] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||