Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 422-432.DOI: 10.11996/JG.j.2095-302X.2024030422
Previous Articles Next Articles
ZHU Qiangjun1(), HU Bin1, WANG Huilan2, WANG Yang3(
)
Received:
2023-10-17
Accepted:
2024-01-09
Online:
2024-06-30
Published:
2024-06-06
Contact:
WANG Yang (1972-), professor, Ph.D. His main research interests cover artificial intelligence systems and machine vision. E-mail:About author:
ZHU Qiangjun (1984-), associate professor, master. His main research interests cover intelligent algorithm, pattern recognition and mathematical modeling. E-mail:zhuqiangjun@ahnu.edu.cn
Supported by:
CLC Number:
ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030422
样本真实情况 | 预测结果 | |
---|---|---|
正样本 | 负样本 | |
正样本 | TP | FN |
负样本 | FP | TN |
Table 1 Confusion matrix
样本真实情况 | 预测结果 | |
---|---|---|
正样本 | 负样本 | |
正样本 | TP | FN |
负样本 | FP | TN |
模型 | P/% | R/% | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|---|---|
YOLOv8s | 85.34 | 78.39 | 87.18 | 11.14 | 28.5 | 32.15 |
YOLOv8s+小目标检测层 | 88.02 | 85.46 | 92.18 | 10.86 | 37.9 | 26.67 |
YOLOv8s+改进小目标检测层 | 87.39 | 84.71 | 91.71 | 3.53 | 31.0 | 37.88 |
Table 2 Comparison experiment of small target layers
模型 | P/% | R/% | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|---|---|
YOLOv8s | 85.34 | 78.39 | 87.18 | 11.14 | 28.5 | 32.15 |
YOLOv8s+小目标检测层 | 88.02 | 85.46 | 92.18 | 10.86 | 37.9 | 26.67 |
YOLOv8s+改进小目标检测层 | 87.39 | 84.71 | 91.71 | 3.53 | 31.0 | 37.88 |
模型 | 小目标 | 中等目标 | 大目标 | |||
---|---|---|---|---|---|---|
AP/% | AR/% | AP/% | AR/% | AP/% | AR/% | |
YOLOv8s | 47.20 | 62.24 | 73.36 | 82.27 | 85.23 | 88.55 |
YOLOv8s+小目标检测层 | 58.62 | 71.27 | 75.88 | 82.74 | 82.89 | 89.41 |
YOLOv8s+改进小目标检测层 | 55.19 | 77.18 | 75.30 | 68.71 | 84.77 | 89.02 |
Table 3 Target grading test
模型 | 小目标 | 中等目标 | 大目标 | |||
---|---|---|---|---|---|---|
AP/% | AR/% | AP/% | AR/% | AP/% | AR/% | |
YOLOv8s | 47.20 | 62.24 | 73.36 | 82.27 | 85.23 | 88.55 |
YOLOv8s+小目标检测层 | 58.62 | 71.27 | 75.88 | 82.74 | 82.89 | 89.41 |
YOLOv8s+改进小目标检测层 | 55.19 | 77.18 | 75.30 | 68.71 | 84.77 | 89.02 |
模型 | P/% | R/% | mAP50/% | FPS |
---|---|---|---|---|
YOLOv8s+GIOU | 86.50 | 77.09 | 86.15 | 32.79 |
YOLOv8s+CIOU | 85.34 | 78.39 | 87.18 | 32.15 |
YOLOv8s+DIOU | 87.04 | 78.5 | 87.59 | 30.40 |
YOLOv8s+SIOU | 85.77 | 78.95 | 87.31 | 26.60 |
YOLOv8s+MPDIOU | 85.80 | 78.02 | 86.96 | 33.00 |
YOLOv8s+Wise-IOU | 89.61 | 77.16 | 87.70 | 33.22 |
Table 4 Comparative experiment results of loss function
模型 | P/% | R/% | mAP50/% | FPS |
---|---|---|---|---|
YOLOv8s+GIOU | 86.50 | 77.09 | 86.15 | 32.79 |
YOLOv8s+CIOU | 85.34 | 78.39 | 87.18 | 32.15 |
YOLOv8s+DIOU | 87.04 | 78.5 | 87.59 | 30.40 |
YOLOv8s+SIOU | 85.77 | 78.95 | 87.31 | 26.60 |
YOLOv8s+MPDIOU | 85.80 | 78.02 | 86.96 | 33.00 |
YOLOv8s+Wise-IOU | 89.61 | 77.16 | 87.70 | 33.22 |
模型 | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|
YOLOv6s[ | 84.50 | 18.51 | 45.21 | 30.30 |
YOLOv7[ | 56.33 | 36.62 | 103.60 | 38.91 |
YOLOv8s | 87.18 | 11.14 | 28.50 | 32.15 |
HIC-YOLOv5[ | 91.62 | 9.38 | 31.40 | 30.12 |
CGS-Ghost-YOLO[ | 66.04 | 6.25 | 17.00 | 27.25 |
CCSPNet-Joint[ | 92.59 | 36.81 | 65.80 | 42.02 |
Ghost-YOLOv8[ | 86.78 | 2.69 | 12.60 | 30.67 |
Ours | 91.68 | 2.62 | 24.70 | 43.67 |
Table 5 Algorithm comparison experiment
模型 | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|
YOLOv6s[ | 84.50 | 18.51 | 45.21 | 30.30 |
YOLOv7[ | 56.33 | 36.62 | 103.60 | 38.91 |
YOLOv8s | 87.18 | 11.14 | 28.50 | 32.15 |
HIC-YOLOv5[ | 91.62 | 9.38 | 31.40 | 30.12 |
CGS-Ghost-YOLO[ | 66.04 | 6.25 | 17.00 | 27.25 |
CCSPNet-Joint[ | 92.59 | 36.81 | 65.80 | 42.02 |
Ghost-YOLOv8[ | 86.78 | 2.69 | 12.60 | 30.67 |
Ours | 91.68 | 2.62 | 24.70 | 43.67 |
评价指标 | CCTSDB | RSOD-aircraft | TT100K | |||
---|---|---|---|---|---|---|
YOLOv8s | 本文模型 | YOLOv8s | 本文模型 | YOLOv8s | 本文模型 | |
P/% | 81.51 | 87.56 | 95.13 | 98.00 | 85.34 | 88.43 |
R/% | 53.72 | 73.46 | 84.54 | 84.67 | 78.39 | 82.98 |
mAP50/% | 61.92 | 80.56 | 91.74 | 94.02 | 87.18 | 91.68 |
mAP50~95/% | 32.81 | 50.30 | 62.66 | 62.66 | 66.44 | 69.57 |
参数量/M | 11.14 | 2.62 | 11.14 | 2.62 | 11.14 | 2.62 |
GFLOPs | 28.50 | 24.70 | 28.50 | 24.70 | 28.50 | 24.70 |
FPS | 50.00 | 60.61 | 113.64 | 172.41 | 32.15 | 43.67 |
Table 6 Generalization experiment results
评价指标 | CCTSDB | RSOD-aircraft | TT100K | |||
---|---|---|---|---|---|---|
YOLOv8s | 本文模型 | YOLOv8s | 本文模型 | YOLOv8s | 本文模型 | |
P/% | 81.51 | 87.56 | 95.13 | 98.00 | 85.34 | 88.43 |
R/% | 53.72 | 73.46 | 84.54 | 84.67 | 78.39 | 82.98 |
mAP50/% | 61.92 | 80.56 | 91.74 | 94.02 | 87.18 | 91.68 |
mAP50~95/% | 32.81 | 50.30 | 62.66 | 62.66 | 66.44 | 69.57 |
参数量/M | 11.14 | 2.62 | 11.14 | 2.62 | 11.14 | 2.62 |
GFLOPs | 28.50 | 24.70 | 28.50 | 24.70 | 28.50 | 24.70 |
FPS | 50.00 | 60.61 | 113.64 | 172.41 | 32.15 | 43.67 |
模型 | C2faster | 改进小目标层 | Wise-IOU | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
YOLOv8s | 无 | 无 | 无 | 87.18 | 11.14 | 28.5 | 32.15 |
模型2 | 有 | 无 | 无 | 86.54 | 8.32 | 21.4 | 31.75 |
模型3 | 无 | 有 | 无 | 91.71 | 3.53 | 31.0 | 37.88 |
模型4 | 无 | 无 | 有 | 87.70 | 11.14 | 28.5 | 33.22 |
模型5 | 有 | 有 | 无 | 91.04 | 2.62 | 24.7 | 43.48 |
模型6 | 无 | 有 | 有 | 92.01 | 3.53 | 31.0 | 29.5 |
模型7 | 有 | 无 | 有 | 85.67 | 8.32 | 21.4 | 39.68 |
本文 | 有 | 有 | 有 | 91.68 | 2.62 | 24.7 | 43.67 |
Table 7 Ablation experiment
模型 | C2faster | 改进小目标层 | Wise-IOU | mAP50/% | 参数量/M | GFLOPs | FPS |
---|---|---|---|---|---|---|---|
YOLOv8s | 无 | 无 | 无 | 87.18 | 11.14 | 28.5 | 32.15 |
模型2 | 有 | 无 | 无 | 86.54 | 8.32 | 21.4 | 31.75 |
模型3 | 无 | 有 | 无 | 91.71 | 3.53 | 31.0 | 37.88 |
模型4 | 无 | 无 | 有 | 87.70 | 11.14 | 28.5 | 33.22 |
模型5 | 有 | 有 | 无 | 91.04 | 2.62 | 24.7 | 43.48 |
模型6 | 无 | 有 | 有 | 92.01 | 3.53 | 31.0 | 29.5 |
模型7 | 有 | 无 | 有 | 85.67 | 8.32 | 21.4 | 39.68 |
本文 | 有 | 有 | 有 | 91.68 | 2.62 | 24.7 | 43.67 |
[1] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[2] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[3] | 潘卫国, 刘博, 陈英昊, 等. 基于YOLO v3的交通标志牌检测识别[J]. 传感器与微系统, 2019, 38(11): 147-150. |
PAN W G, LIU B, CHEN Y H, et al. Traffic sign detection and recognition based on YOLO v3[J]. Transducer and Microsystem Technologies, 2019, 38(11): 147-150 (in Chinese). | |
[4] | 周苏, 支雪磊, 刘懂, 等. 基于卷积神经网络的小目标交通标志检测算法[J]. 同济大学学报: 自然科学版, 2019, 47(11): 1626-1632. |
ZHOU S, ZHI X L, LIU D, et al. A convolutional neural network-based method for small traffic sign detection[J]. Journal of Tongji University: Natural Science, 2019, 47(11): 1626-1632 (in Chinese). | |
[5] | 吕禾丰, 陆华才. 基于YOLOv5算法的交通标志识别技术研究[J]. 电子测量与仪器学报, 2021, 35(10): 137-144. |
LV H F, LU H C. Research on traffic sign recognition technology based on YOLOv5 algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 137-144 (in Chinese). | |
[6] |
韦强, 胡晓阳, 赵虹鑫. 改进YOLOv5的交通标志检测方法[J]. 计算机工程与应用, 2023, 59(13): 229-237.
DOI |
WEI Q, HU X Y, ZHAO H X. Improved traffic sign detection method for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 229-237 (in Chinese).
DOI |
|
[7] | 袁红春, 陶磊. 基于改进的Yolov8商业渔船电子监控数据中鱼类的检测与识别[J]. 大连海洋大学学报, 2023, 38(3): 533-542. |
YUAN H C, TAO L. Detection and identification of fish in electronic monitoring data of commercial fishing vessels based on improved Yolov8[J]. Journal of Dalian Ocean University, 2023, 38(3): 533-542 (in Chinese). | |
[8] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
[9] |
熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost- YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20): 200-207.
DOI |
XIONG E J, ZHANG R F, LIU Y H, et al. Ghost-YOLOv8 detection algorithm for traffic signs[J]. Computer Engineering and Applications, 2023, 59(20): 200-207 (in Chinese).
DOI |
|
[10] |
高昂, 梁兴柱, 夏晨星, 等. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898.
DOI |
GAO A, LIANG X Z, XIA C X, et al. A dense pedestrian detection algorithm with improved YOLOv8[J]. Journal of Graphics, 2023, 44(5): 890-898 (in Chinese).
DOI |
|
[11] | 李晓佩, 张寅宝, 李严培, 等. 一种基于YOLOv5s的红外图像目标检测改进算法[J]. 激光与红外, 2023, 53(7): 1043-1051. |
LI X P, ZHANG Y B, LI Y P, et al. An improved method of infrared image target detection based on YOLOv5s[J]. Laser & Infrared, 2023, 53(7): 1043-1051 (in Chinese). | |
[12] | 赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究[J]. 图学学报, 2022, 43(5): 776-782. |
ZHAO L L, WANG X Y, ZHANG Y, et al. Vehicle target detection based on YOLOv5s fusion SENet[J]. Journal of Graphics, 2022, 43(5): 776-782 (in Chinese). | |
[13] | WU W T, LIU H, LI L L, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image[J]. PLoS One, 2021, 16(10): e0259283. |
[14] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2023-04-09]. http://arxiv.org/abs/2107.08430.pdf. |
[15] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580. |
[16] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-05-02) [2023-04-12]. http://arxiv.org/abs/1502.03167.pdf. |
[17] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[EB/OL]. (2013-05-06) [2023-04-22]. http://ai.stanford.edu/-amaas/papers/relu_hybrid_icml2013_final.pdf. |
[18] | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[EB/OL]. [2023-04-12]. https://www.docin.com/p-830004906.html. |
[19] |
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
DOI PMID |
[20] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[21] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[22] | FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3490-3499. |
[23] | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. (2019-11-06) [2023-04-12]. http://arxiv.org/abs/1911.08287.pdf. |
[24] | LI X, WANG W H, WU L J, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[EB/OL]. (2020-06-08) [2023-04-02]. https://www.arxiv.org/abs/2006.04388v1.pdf. |
[25] | CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031. |
[26] | TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-08-08) [2023-04-12]. http://arxiv.org/abs/2301.10051.pdf. |
[27] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 658-666. |
[28] | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25) [2023-04-12]. http://arxiv.org/abs/2205.12740.pdf. |
[29] | MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. (2023-07-14) [2023-03-12]. http://arxiv.org/abs/2307.07662.pdf. |
[30] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07) [2023-04-12]. http://arxiv.org/abs/2209.02976.pdf. |
[31] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06) [2023-03-12]. http://arxiv.org/abs/2207.02696.pdf. |
[32] | TANG S Y, ZHANG S, FANG Y N. HIC-YOLOv5: improved YOLOv5 for small object detection[EB/OL]. (2023-09-28) [2023-10-01]. http://arxiv.org/abs/2309.16393.pdf. |
[33] |
赵宏, 冯宇博. 基于CGS-Ghost YOLO的交通标志检测研究[J]. 计算机工程, 2023, 49(12): 194-204.
DOI |
ZHAO H, FENG Y B. Research on traffic sign detection based on CGS-Ghost YOLO[J]. Computer Engineering, 2023, 49(12): 194-204 (in Chinese).
DOI |
|
[34] | HONG H Q, ZHOU Y, SHU X Y, et al. CCSPNet-Joint: efficient joint training method for traffic sign detection under extreme conditions[EB/OL]. (2023-09-25) [2023-10-01]. http://arxiv.org/abs/2309.06902.pdf. |
[1] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[2] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[3] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[4] | YUAN Chao, ZHAO Yadong, ZHANG Yao, WANG Jiaxuan, XU Dawei, ZHAI Yongjie, ZHU Songsong. Lightweight multi-modal pedestrian detection algorithm based on YOLO [J]. Journal of Graphics, 2024, 45(1): 35-46. |
[5] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[6] | PI Jun, NIU Hou-xing, GAO Zhi-yun. Lightweight human pose estimation algorithm by integrating CA and BiFPN [J]. Journal of Graphics, 2023, 44(5): 868-878. |
[7] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[8] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[9] | XIONG Ju-ju, XU Yang, FAN Run-ze, SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. |
[10] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[11] | ZHANG Yun-bo, YI Peng-fei, ZHOU Dong-sheng, ZHANG Qiang, WEI Xiao-peng. Efficient pedestrian detector combining depthwise separable convolution and standard convolution [J]. Journal of Graphics, 2022, 43(2): 230-238. |
[12] | ZHANG Ming, ZHANG Fang-hui, ZONG Jia-ping, SONG Zhi, CEN Yi-gang, ZHANG Lin-na . Face detection and embedded implementation of lightweight network [J]. Journal of Graphics, 2022, 43(2): 239-246. |
[13] | SU Chang-bao, GONG Shi-cai. Fully automatic matting algorithm for portraits based on deep learning [J]. Journal of Graphics, 2022, 43(2): 247-253. |
[14] | LIU Yu-jie, ZHANG Min-jie, LI Zong-min, LI Hua. Lightweight human pose estimation with global pose perception [J]. Journal of Graphics, 2022, 43(2): 333-341. |
[15] | ZHANG Fang-lan, LIU Long-ji, YAO Wan-tong . Customized design method of ankle-foot orthosis oriented to the needs of key users [J]. Journal of Graphics, 2021, 42(5): 841-848. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||