Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 112-125.DOI: 10.11996/JG.j.2095-302X.2024010112
• Image Processing and Computer Vision • Previous Articles Next Articles
Received:2023-07-17
															
							
															
							
																	Accepted:2023-10-12
															
							
																	Online:2024-02-29
															
							
																	Published:2024-02-29
															
						About author:CUI Kebin (1979-), lecturer, Ph.D. His main research interests cover digital image processing and pattern recognition. E-mail:ncepuckb@163.com
CLC Number:
CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010112
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n | 5.96 | 3.01 | 8.9 | 83.7 | 116 | 
| YOLOv8n-CA | 6.34 | 3.06 | 8.3 | 84.2 | 103 | 
| YOLOv8n-CBAM | 6.81 | 3.29 | 8.5 | 85.5 | 93 | 
| YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 | 
Table 1 Incorporating Improved CBAM Module in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n | 5.96 | 3.01 | 8.9 | 83.7 | 116 | 
| YOLOv8n-CA | 6.34 | 3.06 | 8.3 | 84.2 | 103 | 
| YOLOv8n-CBAM | 6.81 | 3.29 | 8.5 | 85.5 | 93 | 
| YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 | 
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 | 
| YOLOv8n-MCB-B2 | 9.07 | 4.41 | 9.6 | 87.0 | 94 | 
| YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 | 
Table 2 Incorporate improve the BiFPN module in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB | 9.07 | 4.41 | 9.6 | 86.5 | 101 | 
| YOLOv8n-MCB-B2 | 9.07 | 4.41 | 9.6 | 87.0 | 94 | 
| YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 | 
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 | 
| YOLOv8n-MCB-BA | 11.70 | 5.73 | 11.8 | 88.5 | 81 | 
Table 3 Incorporate the ASFF module in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-B3 | 9.10 | 4.43 | 9.7 | 87.2 | 97 | 
| YOLOv8n-MCB-BA | 11.70 | 5.73 | 11.8 | 88.5 | 81 | 
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 86.1 | 81 | 
| YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 | 
Table 4 Changed to four-head prediction head in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 86.1 | 81 | 
| YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 | 
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 88.5 | 81 | 
| MCB-FAH-YOLOv8 | 12.4 | 6.06 | 12.1 | 88.8 | 80 | 
Table 5 YOLOv3.0 changed to SimCSPSPFF module in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-BA | 11.7 | 5.73 | 11.8 | 88.5 | 81 | 
| MCB-FAH-YOLOv8 | 12.4 | 6.06 | 12.1 | 88.8 | 80 | 
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 | 
| MCB-FAH-YOLOv8_FD | 12.7 | 6.15 | 17.4 | 87.0 | 60 | 
Table 6 YOLOv5.0 changed to SimCSPSPFF module in VOC2007 Dataset Experiments
| 算法模型 | 体积/MB | 参数量/M | 计算量/GFLOPs | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|---|
| YOLOv8n-MCB-FAH_1 | 12.0 | 5.82 | 17.2 | 86.8 | 64 | 
| MCB-FAH-YOLOv8_FD | 12.7 | 6.15 | 17.4 | 87.0 | 60 | 
| 算法模型 | 体积/MB | 参数量/M | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|
| YOLOv8n | 5.96 | 3.01 | 78.4 | 116 | 
| MCB-FAH-YOLOv8 | 12.40 | 6.06 | 81.8 | 80 | 
Table 7 Experimental comparison of NEU-DET dataset
| 算法模型 | 体积/MB | 参数量/M | mAP@0.5:0.95/% | FPS | 
|---|---|---|---|---|
| YOLOv8n | 5.96 | 3.01 | 78.4 | 116 | 
| MCB-FAH-YOLOv8 | 12.40 | 6.06 | 81.8 | 80 | 
| 算法模型 | mAP@0.5/% | Sc | Pa | Cr | In | Ps | Rs | 
|---|---|---|---|---|---|---|---|
| Faster-RCNN | 77.5 | 96.1 | 93.9 | 33.5 | 86.3 | 90.0 | 65.4 | 
| SSD | 74.7 | 73.4 | 95.4 | 44.4 | 82.7 | 88.7 | 63.7 | 
| YOLOv3 | 73.4 | 82.0 | 91.3 | 37.5 | 74.3 | 84.8 | 70.2 | 
| YOLOv4 | 74.6 | 90.3 | 93.7 | 37.9 | 84.0 | 76.8 | 64.9 | 
| YOLOv5 | 75.1 | 89.9 | 94.0 | 38.4 | 81.7 | 82.6 | 63.8 | 
| YOLOv8n | 97.7 | 98.8 | 99.4 | 94.4 | 98.8 | 96.8 | 98.3 | 
| MCB-FAH-YOLOv8 | 98.6 | 99.2 | 99.5 | 97.3 | 98.7 | 97.7 | 99.2 | 
Table 8 Detection of effects on NEU-DET
| 算法模型 | mAP@0.5/% | Sc | Pa | Cr | In | Ps | Rs | 
|---|---|---|---|---|---|---|---|
| Faster-RCNN | 77.5 | 96.1 | 93.9 | 33.5 | 86.3 | 90.0 | 65.4 | 
| SSD | 74.7 | 73.4 | 95.4 | 44.4 | 82.7 | 88.7 | 63.7 | 
| YOLOv3 | 73.4 | 82.0 | 91.3 | 37.5 | 74.3 | 84.8 | 70.2 | 
| YOLOv4 | 74.6 | 90.3 | 93.7 | 37.9 | 84.0 | 76.8 | 64.9 | 
| YOLOv5 | 75.1 | 89.9 | 94.0 | 38.4 | 81.7 | 82.6 | 63.8 | 
| YOLOv8n | 97.7 | 98.8 | 99.4 | 94.4 | 98.8 | 96.8 | 98.3 | 
| MCB-FAH-YOLOv8 | 98.6 | 99.2 | 99.5 | 97.3 | 98.7 | 97.7 | 99.2 | 
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n | 79.4 | 87.1 | 70.4 | 74.8 | 79.5 | 79.4 | 78.4 | 
| YOLOv8n-CBAM | 79.4 | 86.9 | 70.5 | 75.2 | 80.2 | 79.4 | 78.5 | 
| YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 | 
Table 9 Incorporating Improved CBAM Module in NEU-DET Dataset Experiments
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n | 79.4 | 87.1 | 70.4 | 74.8 | 79.5 | 79.4 | 78.4 | 
| YOLOv8n-CBAM | 79.4 | 86.9 | 70.5 | 75.2 | 80.2 | 79.4 | 78.5 | 
| YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 | 
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 | 
| YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 | 
Table 10 YOLOv8n-MCB changed to SimCSPSPFF module in NEU-DET Dataset Experiments
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n-MCB | 78.5 | 87.5 | 72.2 | 75.2 | 81.1 | 80.7 | 79.2 | 
| YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 | 
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 | 
| MCB-FAH-YOLOv8 | 79.7 | 88.5 | 77.2 | 77.9 | 83.3 | 84.3 | 81.8 | 
Table 11 Incorporate improve the BiFPN module in NEU-DET Dataset Experiments
| 算法模型 | Sc | Pa | Cr | In | Ps | Rs | mAP@0.5:0.95/% | 
|---|---|---|---|---|---|---|---|
| YOLOv8n-MCB-Sim | 80.6 | 88.6 | 78.4 | 77.8 | 81.9 | 84.8 | 82.0 | 
| MCB-FAH-YOLOv8 | 79.7 | 88.5 | 77.2 | 77.9 | 83.3 | 84.3 | 81.8 | 
| [1] | 张艳, 冯锋. 带钢表面缺陷检测技术探析[J]. 信息与电脑: 理论版, 2021, 33(11): 19-22. | 
| ZHANG Y, FENG F. Analysis of strip surface defect detection technology[J]. China Computer & Communication, 2021, 33(11): 19-22 (in Chinese). | |
| [2] |  
											 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292. 
																							 DOI  | 
										
| LI W G, YE X, ZHAO Y T, et al. Strip steel surface defect detection based on improved YOLOv3 algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292 (in Chinese). | |
| [3] |  
											 梁日强, 胡燕林, 蒋占四. 基于改进的残差收缩网络的带钢表面缺陷识别[J]. 组合机床与自动化加工技术, 2022(6): 82-85. 
																							 DOI  | 
										
| LIANG R Q, HU Y L, JIANG Z S. Strip surface defect identification based on improved residual shrinkage network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(6): 82-85 (in Chinese). | |
| [4] | 彭晏飞, 袁晓龙, 陈炎康, 等. 改进YOLOv5s的带钢表面缺陷检测方法[J/OL]. 机械科学与技术(2023-06-02) [2023-07- 01]. https://kns.cnki.net/kcms2/article/abstract?v=sf24_f5fySZD1- Ycih16WJXSfIVveZZx-CIfY7zktvjqzQn6B0DTDcZgNVLA0NIuChhowEzC5HzZY9pPVuTLKBnfsQHrTmDr0UAjhaYBQI51aIHBb882L1pGFuSBOaqzFrS6UO45b_s=&uniplatform=NZKPT&language=CHS. | 
| PENG Y F, YUAN X L, CHEN Y K, et al. Improved YOLOv5s strip surface defect detection method[J/OL]. Mechanical Science and Technology for Aerospace Engineering (2023-06-02) [2023-07-01]. https://kns.cnki.net/kcms2/article/abstract?v=sf24_f5fySZD1- Ycih16WJXSfIVveZZx-CIfY7zktvjqzQn6B0DTDcZgNVLA0NIuChhowEzC5HzZY9pPVuTLKBnfsQHrTmDr0UAjhaYBQI51aIHBb882L1pGFuSBOaqzFrS6UO45b_s=&uniplatform=NZKPT&language=CHS. (in Chinese). | |
| [5] | 唐东林, 杨洲, 程衡, 等. 浅层卷积神经网络融合Transformer的金属缺陷图像识别方法[J]. 中国机械工程, 2022, 33(19): 2298-2305, 2316. | 
|  
											 TANG D L, YANG Z, CHENG H, et al. Metal defect image recognition method based on shallow CNN fusion transformer[J]. China Mechanical Engineering, 2022, 33(19): 2298-2305, 2316 (in Chinese). 
																							 DOI  | 
										|
| [6] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. | 
| [7] | LI C Y, LI L L, GENG Y F, et al. YOLOv6 v3.0: a full-scale reloading[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2301.05586.pdf. | 
| [8] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. | 
| [9] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10781-10790. | 
| [10] | LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1911.09516.pdf. | 
| [11] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2004.10934.pdf. | 
| [12] | ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1710.09412.pdf. | 
| [13] | YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 6022-6031. | 
| [14] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. | 
| [15] | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]// European Conference on Computer Vision. Cham: Springer, 2014: 346-361. | 
| [16] |  
											 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
																							 DOI PMID  | 
										
| [17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. | 
| [18] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. | 
| [19] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. | 
| [20] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1804.02767.pdf. | 
| [21] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. | 
| [22] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x16 words: transformers for image recognition at scale[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2010.11929.pdf. | 
| [23] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. | 
| [24] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3141-3149. | 
| [25] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2107.08430.pdf. | 
| [26] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2207.02696.pdf. | 
| [1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. | 
| [2] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. | 
| [3] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. | 
| [4] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. | 
| [5] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. | 
| [6] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. | 
| [7] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. | 
| [8] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. | 
| [9] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. | 
| [10] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. | 
| [11] | AI Liefu, TAO Yong, JIANG Changyu. Orthogonal fusion image descriptor based on global attention [J]. Journal of Graphics, 2024, 45(3): 472-481. | 
| [12] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. | 
| [13] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. | 
| [14] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. | 
| [15] | GU Tianjun, XIONG Suya, LIN Xiao. Diversified generation of theatrical masks based on SASGAN [J]. Journal of Graphics, 2024, 45(1): 102-111. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
