Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 47-58.DOI: 10.11996/JG.j.2095-302X.2025010047
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Wenxiang(), WANG Xiali(
), WANG Xinyi, YANG Zongbao
Received:
2024-07-10
Accepted:
2024-10-11
Online:
2025-02-28
Published:
2025-02-14
Contact:
WANG Xiali
About author:
First author contact:ZHANG Wenxiang (2001-), master student. His main research interests cover graphic image processing and computer vision. E-mail:2495898570@qq.com
Supported by:
CLC Number:
ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions[J]. Journal of Graphics, 2025, 46(1): 47-58.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010047
阶段 | 操作 | 输入 分辨率 | 输出 通道数 | 层数 |
---|---|---|---|---|
1 | Conv 3×3 | 224×224 | 48 | 1 |
2 | MBConv1,k3×3 | 112×112 | 24 | 1 |
3 | MBConv1,k3×3 | 112×112 | 24 | 1 |
4 | MBConv6,k3×3 | 112×112 | 32 | 1 |
5 | MBConv6,k3×3 | 56×56 | 32 | 3 |
6 | MBConv6,k5×5 | 56×56 | 56 | 1 |
7 | MBConv6,k5×5 | 28×28 | 56 | 3 |
8 | MBConv6,k3×3 | 28×28 | 112 | 1 |
9 | MBConv6,k3×3 | 14×14 | 112 | 5 |
10 | MBConv6,k5×5 | 14×14 | 160 | 1 |
11 | MBConv6,k5×5 | 14×14 | 160 | 5 |
12 | MBConv6,k5×5 | 14×14 | 272 | 1 |
13 | MBConv6,k5×5 | 7×7 | 272 | 7 |
14 | MBConv6,k3×3 | 7×7 | 448 | 1 |
15 | MBConv6,k3×3 | 7×7 | 448 | 1 |
16 | Conv 1×1 & Pooling & FC | 7×7 | 1792 | 1 |
Table 1 EfficientNet-b4 network architecture
阶段 | 操作 | 输入 分辨率 | 输出 通道数 | 层数 |
---|---|---|---|---|
1 | Conv 3×3 | 224×224 | 48 | 1 |
2 | MBConv1,k3×3 | 112×112 | 24 | 1 |
3 | MBConv1,k3×3 | 112×112 | 24 | 1 |
4 | MBConv6,k3×3 | 112×112 | 32 | 1 |
5 | MBConv6,k3×3 | 56×56 | 32 | 3 |
6 | MBConv6,k5×5 | 56×56 | 56 | 1 |
7 | MBConv6,k5×5 | 28×28 | 56 | 3 |
8 | MBConv6,k3×3 | 28×28 | 112 | 1 |
9 | MBConv6,k3×3 | 14×14 | 112 | 5 |
10 | MBConv6,k5×5 | 14×14 | 160 | 1 |
11 | MBConv6,k5×5 | 14×14 | 160 | 5 |
12 | MBConv6,k5×5 | 14×14 | 272 | 1 |
13 | MBConv6,k5×5 | 7×7 | 272 | 7 |
14 | MBConv6,k3×3 | 7×7 | 448 | 1 |
15 | MBConv6,k3×3 | 7×7 | 448 | 1 |
16 | Conv 1×1 & Pooling & FC | 7×7 | 1792 | 1 |
名称 | 版本 |
---|---|
CPU | 16核,AMD EPYC 9654 |
GPU | NVIDIA GeForce RTX 4090 |
内存 | 60 GB |
操作系统 | Ubuntu 22.04.4 LTS |
GPU加速库 | CUDA 11.8.0,CUDNN 8.9.4 |
环境 | Python 3.10.13,Pytorch 2.1.0 |
Table 2 Experimental environment
名称 | 版本 |
---|---|
CPU | 16核,AMD EPYC 9654 |
GPU | NVIDIA GeForce RTX 4090 |
内存 | 60 GB |
操作系统 | Ubuntu 22.04.4 LTS |
GPU加速库 | CUDA 11.8.0,CUDNN 8.9.4 |
环境 | Python 3.10.13,Pytorch 2.1.0 |
网络 | 数据增强 | 测试集AUC/% | AVG | ||
---|---|---|---|---|---|
FF++ | CDF | DFDC | |||
EfficientNet-b4 | 98.10 | 71.77 | 53.32 | 74.40 | |
√ | 99.73 | 84.80 | 70.32 | 84.95 | |
Xception | 99.58 | 50.73 | 45.05 | 65.12 | |
√ | 99.72 | 54.48 | 45.29 | 66.50 |
Table 3 The influence of data augmentation on model performance
网络 | 数据增强 | 测试集AUC/% | AVG | ||
---|---|---|---|---|---|
FF++ | CDF | DFDC | |||
EfficientNet-b4 | 98.10 | 71.77 | 53.32 | 74.40 | |
√ | 99.73 | 84.80 | 70.32 | 84.95 | |
Xception | 99.58 | 50.73 | 45.05 | 65.12 | |
√ | 99.72 | 54.48 | 45.29 | 66.50 |
骨干 | AbL | FRD | CORE | 测试集AUC/% | AVG | 测试集EER↓/% | AVG | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
FF++ | CDF | DFDC | FF++ | CDF | DFDC | ||||||
EfficientNet-b4 | 99.73 | 84.80 | 70.32 | 84.95 | 0.55 | 28.08 | 40.24 | 22.97 | |||
√ | 99.62 | 90.34 | 73.91 | 87.96 | 1.02 | 24.98 | 34.42 | 20.14 | |||
√ | 99.63 | 90.95 | 70.79 | 87.12 | 0.75 | 25.91 | 37.68 | 21.45 | |||
√ | 99.48 | 91.16 | 73.84 | 88.16 | 1.12 | 23.00 | 35.50 | 19.87 | |||
√ | √ | 99.62 | 91.06 | 72.88 | 87.85 | 0.97 | 23.74 | 36.03 | 20.25 | ||
√ | √ | 99.52 | 92.10 | 75.83 | 89.15 | 1.19 | 23.34 | 34.96 | 19.83 | ||
√ | √ | 99.58 | 92.80 | 73.73 | 88.70 | 1.27 | 23.63 | 34.85 | 19.92 | ||
√ | √ | √ | 99.59 | 93.43 | 75.74 | 89.58 | 1.00 | 21.86 | 34.95 | 19.27 | |
Xception | 99.72 | 54.48 | 45.29 | 66.50 | 0.75 | 46.76 | 53.87 | 33.79 | |||
√ | 99.47 | 88.45 | 72.79 | 86.90 | 2.62 | 26.13 | 36.87 | 21.87 | |||
√ | 99.64 | 85.40 | 57.16 | 80.73 | 1.83 | 29.25 | 42.30 | 24.46 | |||
√ | 99.50 | 88.83 | 72.31 | 86.88 | 2.50 | 26.03 | 36.25 | 21.59 | |||
√ | √ | 99.44 | 88.82 | 72.50 | 86.92 | 2.43 | 26.41 | 36.25 | 21.70 | ||
√ | √ | 99.46 | 90.02 | 75.34 | 88.27 | 1.92 | 25.79 | 35.84 | 21.18 | ||
√ | √ | 99.60 | 89.51 | 73.23 | 87.45 | 2.01 | 26.22 | 36.77 | 21.67 | ||
√ | √ | √ | 99.37 | 90.34 | 75.58 | 88.43 | 1.71 | 26.43 | 35.06 | 21.07 |
Table 4 The influence of varied module compositions on model performance
骨干 | AbL | FRD | CORE | 测试集AUC/% | AVG | 测试集EER↓/% | AVG | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
FF++ | CDF | DFDC | FF++ | CDF | DFDC | ||||||
EfficientNet-b4 | 99.73 | 84.80 | 70.32 | 84.95 | 0.55 | 28.08 | 40.24 | 22.97 | |||
√ | 99.62 | 90.34 | 73.91 | 87.96 | 1.02 | 24.98 | 34.42 | 20.14 | |||
√ | 99.63 | 90.95 | 70.79 | 87.12 | 0.75 | 25.91 | 37.68 | 21.45 | |||
√ | 99.48 | 91.16 | 73.84 | 88.16 | 1.12 | 23.00 | 35.50 | 19.87 | |||
√ | √ | 99.62 | 91.06 | 72.88 | 87.85 | 0.97 | 23.74 | 36.03 | 20.25 | ||
√ | √ | 99.52 | 92.10 | 75.83 | 89.15 | 1.19 | 23.34 | 34.96 | 19.83 | ||
√ | √ | 99.58 | 92.80 | 73.73 | 88.70 | 1.27 | 23.63 | 34.85 | 19.92 | ||
√ | √ | √ | 99.59 | 93.43 | 75.74 | 89.58 | 1.00 | 21.86 | 34.95 | 19.27 | |
Xception | 99.72 | 54.48 | 45.29 | 66.50 | 0.75 | 46.76 | 53.87 | 33.79 | |||
√ | 99.47 | 88.45 | 72.79 | 86.90 | 2.62 | 26.13 | 36.87 | 21.87 | |||
√ | 99.64 | 85.40 | 57.16 | 80.73 | 1.83 | 29.25 | 42.30 | 24.46 | |||
√ | 99.50 | 88.83 | 72.31 | 86.88 | 2.50 | 26.03 | 36.25 | 21.59 | |||
√ | √ | 99.44 | 88.82 | 72.50 | 86.92 | 2.43 | 26.41 | 36.25 | 21.70 | ||
√ | √ | 99.46 | 90.02 | 75.34 | 88.27 | 1.92 | 25.79 | 35.84 | 21.18 | ||
√ | √ | 99.60 | 89.51 | 73.23 | 87.45 | 2.01 | 26.22 | 36.77 | 21.67 | ||
√ | √ | √ | 99.37 | 90.34 | 75.58 | 88.43 | 1.71 | 26.43 | 35.06 | 21.07 |
方法 | 骨干 | 测试集AUC/% | AVG | 测试集EER↓/% | AVG | ||||
---|---|---|---|---|---|---|---|---|---|
FF++ | CDF | DFDC | FF++ | CDF | DFDC | ||||
Xception*[ | Xception | 99.72 | 54.48 | 45.29 | 66.50 | 0.75 | 46.76 | 53.87 | 50.32 |
EfficientNet*[ | EfficientNet-b4 | 99.73 | 84.80 | 70.32 | 84.95 | 0.55 | 28.08 | 40.24 | 34.16 |
ID-unware[ | EfficientNet-b4 | 99.79 | 93.88 | 73.85 | 89.17 | - | - | - | - |
GFF[ | Xception | 98.36 | 75.31 | 71.58 | 81.75 | 3.85 | 32.48 | 34.77 | 33.63 |
ART[ | Xception | 99.89 | 92.77 | 73.82 | 88.83 | - | - | - | - |
SBI[ | EfficientNet-b4 | 99.64 | 93.18 | 72.42 | 88.41 | - | - | - | - |
MAT[ | EfficientNet-b4 | 99.27 | 76.65 | 67.34 | 81.08 | 3.35 | 32.83 | 38.31 | 35.57 |
LTW[ | ResNet-50 | 99.17 | 77.14 | 74.58 | 83.63 | 3.32 | 29.34 | 33.81 | 31.58 |
LipForensics[ | ResNet-18 | 97.10 | 82.40 | 73.50 | 84.33 | - | - | - | - |
FTCN[ | ResNet-50 | 99.70 | 86.90 | 74.00 | 86.87 | - | - | - | - |
SFDG[ | EfficientNet-b4 | 99.53 | 75.83 | 73.64 | 83.00 | - | 30.30 | 33.70 | 32.00 |
PEL[ | EfficientNet-b4 | 99.32 | 75.86 | 63.31 | 79.50 | - | 35.70 | 40.40 | 38.05 |
本文方法 | Xception | 99.37 | 90.34 | 75.58 | 88.43 | 1.71 | 26.43 | 35.06 | 30.75 |
EfficientNet-b4 | 99.59 | 93.43 | 75.74 | 89.58 | 1.00 | 21.86 | 34.95 | 28.41 |
Table 5 Comparison with state-of-the-art methods
方法 | 骨干 | 测试集AUC/% | AVG | 测试集EER↓/% | AVG | ||||
---|---|---|---|---|---|---|---|---|---|
FF++ | CDF | DFDC | FF++ | CDF | DFDC | ||||
Xception*[ | Xception | 99.72 | 54.48 | 45.29 | 66.50 | 0.75 | 46.76 | 53.87 | 50.32 |
EfficientNet*[ | EfficientNet-b4 | 99.73 | 84.80 | 70.32 | 84.95 | 0.55 | 28.08 | 40.24 | 34.16 |
ID-unware[ | EfficientNet-b4 | 99.79 | 93.88 | 73.85 | 89.17 | - | - | - | - |
GFF[ | Xception | 98.36 | 75.31 | 71.58 | 81.75 | 3.85 | 32.48 | 34.77 | 33.63 |
ART[ | Xception | 99.89 | 92.77 | 73.82 | 88.83 | - | - | - | - |
SBI[ | EfficientNet-b4 | 99.64 | 93.18 | 72.42 | 88.41 | - | - | - | - |
MAT[ | EfficientNet-b4 | 99.27 | 76.65 | 67.34 | 81.08 | 3.35 | 32.83 | 38.31 | 35.57 |
LTW[ | ResNet-50 | 99.17 | 77.14 | 74.58 | 83.63 | 3.32 | 29.34 | 33.81 | 31.58 |
LipForensics[ | ResNet-18 | 97.10 | 82.40 | 73.50 | 84.33 | - | - | - | - |
FTCN[ | ResNet-50 | 99.70 | 86.90 | 74.00 | 86.87 | - | - | - | - |
SFDG[ | EfficientNet-b4 | 99.53 | 75.83 | 73.64 | 83.00 | - | 30.30 | 33.70 | 32.00 |
PEL[ | EfficientNet-b4 | 99.32 | 75.86 | 63.31 | 79.50 | - | 35.70 | 40.40 | 38.05 |
本文方法 | Xception | 99.37 | 90.34 | 75.58 | 88.43 | 1.71 | 26.43 | 35.06 | 30.75 |
EfficientNet-b4 | 99.59 | 93.43 | 75.74 | 89.58 | 1.00 | 21.86 | 34.95 | 28.41 |
Fig. 9 The comparison of the Grad-CAM heatmaps between the proposed method and Xception ((a) Real image; (b) Forged image; (c) Face-swapped image; (d) Forged region; (e) Xception heatmap; (f) Proposed method heatmap)
[1] | THIES J, ZOLLHÖFER M, STAMMINGER M, et al. Face2Face: real-time face capture and reenactment of RGB videos[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2387-2395. |
[2] | THIES J, ZOLLHÖFER M, NIEßNER M. Deferred neural rendering: Image synthesis using neural textures[J]. ACM Transactions on Graphics (TOG), 2019, 38(4): 66. |
[3] | YIN J, GAN C, ZHAO K, et al. A novel model for imbalanced data classification[C]// The 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 6680-6687. |
[4] | NGUYEN H H, YAMAGISHI J, ECHIZEN I. Use of a capsule network to detect fake images and videos[EB/OL]. (2019-10-29)[2024-01-06]. https://arxiv.org/abs/1910.12467. |
[5] |
穆大强, 李腾. 基于多模态融合的人脸反欺骗技术[J]. 图学学报, 2020, 41(5): 750-756.
DOI |
MU D Q, LI T. Face anti-spoofing technology based on multi-modal fusion[J]. Journal of Graphics, 2020, 41(5): 750-756 (in Chinese). | |
[6] | DAS S, SEFERBEKOV S, DATTA A, et al. Towards solving the DeepFake problem: an analysis on improving DeepFake detection using dynamic face augmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3769-3778. |
[7] | WANG C R, DENG W H. Representative forgery mining for fake face detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14918-14927. |
[8] |
王欣雨, 刘慧, 朱积成, 等. 基于高低频特征分解的深度多模态医学图像融合网络[J]. 图学学报, 2024, 45(1): 65-77.
DOI |
WANG X Y, LIU H, ZHU J C, et al. Deep multimodal medical image fusion network based on high-low frequency feature decomposition[J]. Journal of Graphics, 2024, 45(1): 65-77 (in Chinese).
DOI |
|
[9] | LIN X, WANG Z J, MA L Z, et al. Salient object detection based on multiscale segmentation and fuzzy broad learning[J]. The Computer Journal, 2022, 65(4): 1006-1019. |
[10] | ZHAO T C, XU X, XU M Z, et al. Learning self-consistency for deepfake detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 15003-15013. |
[11] | WANG Z D, BAO J M, ZHOU W G, et al. AltFreezing for more general video face forgery detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 4129-4138. |
[12] | YAN Z Y, LUO Y H, LYU S W, et al. Transcending forgery specificity with latent space augmentation for generalizable DeepFake detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 8984-8994. |
[13] | LE B M, WOO S S. Quality-agnostic deepfake detection with intra-model collaborative learning[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 22321-22332. |
[14] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[15] | TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. [2024-05-09]. https://dblp.uni-trier.de/db/conf/icml/icml2019.html#TanL19. |
[16] | LI Y Z, CHANG M C, LYU S W. In Ictu oculi: Exposing AI created fake videos by detecting eye blinking[C]// 2018 IEEE International Workshop on Information Forensics and Security. New York: IEEE Press, 2018: 1-7. |
[17] | PU J M, MANGAOKAR N, WANG B L, et al. Noisescope: Detecting deepfake images in a blind setting[C]// The 36th Annual Computer Security Applications Conference. New York: ACM, 2020: 913-927. |
[18] | SHAHZAD S A, HASHMI A, KHAN S, et al. Lip sync matters: a novel multimodal forgery detector[C]// 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. New York: IEEE Press, 2022: 1885-1892. |
[19] | VERMA V, LAMB A, BECKHAM C, et al. Manifold Mixup: better representations by interpolating hidden states[EB/OL]. [2024-05-09]. https://dblp.uni-trier.de/db/conf/icml/icml2019.html#VermaLBNMLB19. |
[20] | ZHANG Y C, JIAO R S, LIAO Q C, et al. Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation[J]. Artificial Intelligence in Medicine, 2023, 138: 102476. |
[21] | NI Y S, MENG D P, YU C Q, et al. CORE: consistent representation learning for face forgery detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12-21. |
[22] | DANG H, LIU F, STEHOUWER J, et al. On the detection of digital face manipulation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5780-5789. |
[23] | RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1-11. |
[24] | LI Y Z, YANG X, SUN P, et al. Celeb-DF: a large-scale challenging dataset for DeepFake forensics[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3204-3213. |
[25] | DOLHANSKY B, BITTON J, PFLAUM B, et al. The DeepFake detection challenge (DFDC) dataset[EB/OL]. (2020-10-28) [2024-03-11]. https://arxiv.org/abs/2006.07397. |
[26] | DONG S C, WANG J, JI R H, et al. Implicit identity leakage: The stumbling block to improving deepfake detection generalization[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 3994-4004. |
[27] | LUO Y C, ZHANG Y, YAN J C, et al. Generalizing face forgery detection with high-frequency features[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 16312-16321. |
[28] | BAI W M, LIU Y F, ZHANG Z P, et al. AUNet: learning relations between action units for face forgery detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 24709-24719. |
[29] | SHIOHARA K, YAMASAKI T. Detecting deepfakes with self-blended images[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 18699-18708. |
[30] | ZHAO H Q, WEI T Y, ZHOU W B, et al. Multi-attentional deepfake detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2185-2194. |
[31] | SUN K, LIU H, YE Q X, et al. Domain general face forgery detection by learning to weight[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 2638-2646. |
[32] | HALIASSOS A, VOUGIOUKAS K, PETRIDIS S, et al. Lips don't lie: a generalisable and robust approach to face forgery detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 5037-5047. |
[33] | ZHENG Y L, BAO J M, CHEN D, et al. Exploring temporal coherence for more general video face forgery detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 15024-15034. |
[34] | WANG Y, YU K, CHEN C, et al. Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7278-7287. |
[35] | GU Q Q, CHEN S, YAO T P, et al. Exploiting fine-grained face forgery clues via progressive enhancement learning[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 735-743. |
[36] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 618-626. |
[1] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
[2] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[3] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
[4] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[5] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[6] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[7] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[8] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[9] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[10] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[11] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
[12] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[13] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[14] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[15] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||