Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 94-103.DOI: 10.11996/JG.j.2095-302X.2025010094
• Image Processing and Computer Vision • Previous Articles Next Articles
LU Yang1,2,3(), CHEN Linhui1, JIANG Xiaoheng1,2,3, XU Mingliang1,2,3(
)
Received:
2024-07-04
Accepted:
2024-09-23
Online:
2025-02-28
Published:
2025-02-14
Contact:
XU Mingliang
About author:
First author contact:LU Yang (1991-), lecturer, Ph.D. Her main research interests cover artificial intelligence, deep learning, computer vision and digital image processing. E-mail:ieylu@zzu.edu.cn
Supported by:
CLC Number:
LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception[J]. Journal of Graphics, 2025, 46(1): 94-103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010094
Fig. 2 Example of synthesized defect data and labels ((a) Examples of data with different defect attributes; (b) Examples of data with different distortion characteristics)
模型 | Param/M | Flops/G | Speed/FPS | 合成缺陷数据集 | TID2013数据集 | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | PLCC↑ | SROCC↑ | ||||
TANet[ | 13.88 | 2.16 | 125.6 | 1.195 | 0.992 | 0.786 | 0.786 | 0.510 | 0.502 |
MobileNetV2[ | 2.23 | 0.33 | 225.6 | 1.170 | 0.970 | 0.807 | 0.805 | 0.665 | 0.548 |
MAMIQA[ | 39.22 | 5.45 | 68.4 | 0.975 | 0.880 | 0.865 | 0.869 | 0.937 | 0.928 |
TReSNet[ | 34.46 | 8.39 | 43.3 | 0.944 | 0.858 | 0.878 | 0.881 | 0.883 | 0.863 |
DBCNN[ | 15.31 | 16.50 | 175.1 | 0.808 | 0.802 | 0.886 | 0.888 | 0.865 | 0.816 |
ResNet18[ | 11.44 | 1.82 | 380.0 | 0.768 | 0.776 | 0.904 | 0.904 | 0.843 | 0.810 |
HyperIQA[ | 27.38 | 4.34 | 171.1 | 0.774 | 0.767 | 0.904 | 0.905 | 0.858 | 0.840 |
SDENet(本文) | 11.46 | 1.83 | 351.5 | 0.667 | 0.717 | 0.922 | 0.923 | 0.902 | 0.876 |
Table 1 Comparison of quality evaluation results of different evaluation models
模型 | Param/M | Flops/G | Speed/FPS | 合成缺陷数据集 | TID2013数据集 | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | PLCC↑ | SROCC↑ | ||||
TANet[ | 13.88 | 2.16 | 125.6 | 1.195 | 0.992 | 0.786 | 0.786 | 0.510 | 0.502 |
MobileNetV2[ | 2.23 | 0.33 | 225.6 | 1.170 | 0.970 | 0.807 | 0.805 | 0.665 | 0.548 |
MAMIQA[ | 39.22 | 5.45 | 68.4 | 0.975 | 0.880 | 0.865 | 0.869 | 0.937 | 0.928 |
TReSNet[ | 34.46 | 8.39 | 43.3 | 0.944 | 0.858 | 0.878 | 0.881 | 0.883 | 0.863 |
DBCNN[ | 15.31 | 16.50 | 175.1 | 0.808 | 0.802 | 0.886 | 0.888 | 0.865 | 0.816 |
ResNet18[ | 11.44 | 1.82 | 380.0 | 0.768 | 0.776 | 0.904 | 0.904 | 0.843 | 0.810 |
HyperIQA[ | 27.38 | 4.34 | 171.1 | 0.774 | 0.767 | 0.904 | 0.905 | 0.858 | 0.840 |
SDENet(本文) | 11.46 | 1.83 | 351.5 | 0.667 | 0.717 | 0.922 | 0.923 | 0.902 | 0.876 |
方法 | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ |
---|---|---|---|---|
Baseline | 0.768 | 0.776 | 0.904 | 0.904 |
Baseline+MQP | 0.730 | 0.747 | 0.909 | 0.911 |
Baseline+MAQP | 0.667 | 0.717 | 0.922 | 0.923 |
Table 2 The impact of various modules in network structure on model performance
方法 | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ |
---|---|---|---|---|
Baseline | 0.768 | 0.776 | 0.904 | 0.904 |
Baseline+MQP | 0.730 | 0.747 | 0.909 | 0.911 |
Baseline+MAQP | 0.667 | 0.717 | 0.922 | 0.923 |
操作 | AFE | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |||
---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | |||||
NULL-NULL-NULL-NULL | - | - | - | - | 0.730 | 0.747 | 0.909 | 0.911 |
NULL-A-NULL-NULL | - | √ | - | - | 0.716 | 0.743 | 0.914 | 0.914 |
NULL-A-A-NULL | - | √ | √ | - | 0.691 | 0.726 | 0.918 | 0.918 |
NULL-A-A-A(本文) | - | √ | √ | √ | 0.667 | 0.717 | 0.922 | 0.923 |
A-A-A-A | √ | √ | √ | √ | 0.676 | 0.717 | 0.919 | 0.919 |
Table 3 The impact of AFE module on model performance
操作 | AFE | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |||
---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | |||||
NULL-NULL-NULL-NULL | - | - | - | - | 0.730 | 0.747 | 0.909 | 0.911 |
NULL-A-NULL-NULL | - | √ | - | - | 0.716 | 0.743 | 0.914 | 0.914 |
NULL-A-A-NULL | - | √ | √ | - | 0.691 | 0.726 | 0.918 | 0.918 |
NULL-A-A-A(本文) | - | √ | √ | √ | 0.667 | 0.717 | 0.922 | 0.923 |
A-A-A-A | √ | √ | √ | √ | 0.676 | 0.717 | 0.919 | 0.919 |
注意力模块 | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ |
---|---|---|---|---|
- | 0.734 | 0.742 | 0.907 | 0.912 |
SE | 0.701 | 0.730 | 0.912 | 0.912 |
CBAM | 0.699 | 0.733 | 0.915 | 0.917 |
ECA | 0.692 | 0.731 | 0.917 | 0.918 |
本文 | 0.667 | 0.717 | 0.922 | 0.923 |
Table 4 The impact of attention mechanism on the quality of synthetic defect data
注意力模块 | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ |
---|---|---|---|---|
- | 0.734 | 0.742 | 0.907 | 0.912 |
SE | 0.701 | 0.730 | 0.912 | 0.912 |
CBAM | 0.699 | 0.733 | 0.915 | 0.917 |
ECA | 0.692 | 0.731 | 0.917 | 0.918 |
本文 | 0.667 | 0.717 | 0.922 | 0.923 |
模型 | 对比度失真数据 | 高斯噪声失真数据 | 椒盐噪声失真数据 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |
TANet[ | 1.574 | 1.157 | 0.887 | 0.895 | 1.149 | 0.970 | 0.826 | 0.830 | 1.566 | 1.148 | 0.674 | 0.671 |
MobileNetV2[ | 1.139 | 0.954 | 0.880 | 0.888 | 0.997 | 0.897 | 0.781 | 0.763 | 0.936 | 0.875 | 0.829 | 0.827 |
MAMIQA[ | 0.947 | 0.852 | 0.904 | 0.904 | 0.935 | 0.860 | 0.838 | 0.830 | 0.824 | 0.790 | 0.875 | 0.871 |
TReSNet[ | 0.934 | 0.833 | 0.925 | 0.925 | 0.651 | 0.717 | 0.906 | 0.904 | 0.736 | 0.770 | 0.911 | 0.911 |
DBCNN[ | 0.768 | 0.773 | 0.934 | 0.934 | 0.684 | 0.740 | 0.889 | 0.884 | 0.767 | 0.775 | 0.887 | 0.882 |
ResNet18[ | 0.780 | 0.802 | 0.935 | 0.932 | 0.676 | 0.727 | 0.920 | 0.913 | 0.638 | 0.713 | 0.926 | 0.926 |
HyperIQA[ | 0.824 | 0.806 | 0.927 | 0.933 | 0.651 | 0.712 | 0.901 | 0.903 | 0.766 | 0.779 | 0.904 | 0.897 |
SDENet (本文) | 0.723 | 0.770 | 0.943 | 0.944 | 0.608 | 0.690 | 0.921 | 0.915 | 0.590 | 0.689 | 0.934 | 0.933 |
Table 5 Performance Comparison of Models on Different Distortion Types of Data
模型 | 对比度失真数据 | 高斯噪声失真数据 | 椒盐噪声失真数据 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |
TANet[ | 1.574 | 1.157 | 0.887 | 0.895 | 1.149 | 0.970 | 0.826 | 0.830 | 1.566 | 1.148 | 0.674 | 0.671 |
MobileNetV2[ | 1.139 | 0.954 | 0.880 | 0.888 | 0.997 | 0.897 | 0.781 | 0.763 | 0.936 | 0.875 | 0.829 | 0.827 |
MAMIQA[ | 0.947 | 0.852 | 0.904 | 0.904 | 0.935 | 0.860 | 0.838 | 0.830 | 0.824 | 0.790 | 0.875 | 0.871 |
TReSNet[ | 0.934 | 0.833 | 0.925 | 0.925 | 0.651 | 0.717 | 0.906 | 0.904 | 0.736 | 0.770 | 0.911 | 0.911 |
DBCNN[ | 0.768 | 0.773 | 0.934 | 0.934 | 0.684 | 0.740 | 0.889 | 0.884 | 0.767 | 0.775 | 0.887 | 0.882 |
ResNet18[ | 0.780 | 0.802 | 0.935 | 0.932 | 0.676 | 0.727 | 0.920 | 0.913 | 0.638 | 0.713 | 0.926 | 0.926 |
HyperIQA[ | 0.824 | 0.806 | 0.927 | 0.933 | 0.651 | 0.712 | 0.901 | 0.903 | 0.766 | 0.779 | 0.904 | 0.897 |
SDENet (本文) | 0.723 | 0.770 | 0.943 | 0.944 | 0.608 | 0.690 | 0.921 | 0.915 | 0.590 | 0.689 | 0.934 | 0.933 |
模型 | 低噪声数据 | 高噪声数据 | ||||||
---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |
TANet[ | 1.092 | 0.944 | 0.866 | 0.867 | 0.955 | 0.872 | 0.890 | 0.889 |
MobileNetV2[ | 0.986 | 0.897 | 0.835 | 0.836 | 0.957 | 0.870 | 0.867 | 0.878 |
MAMIQA[ | 0.918 | 0.839 | 0.873 | 0.876 | 0.816 | 0.803 | 0.914 | 0.914 |
TReSNet[ | 0.687 | 0.710 | 0.925 | 0.921 | 0.833 | 0.797 | 0.908 | 0.915 |
DBCNN[ | 0.746 | 0.765 | 0.896 | 0.889 | 0.761 | 0.775 | 0.917 | 0.917 |
ResNet18[ | 0.696 | 0.753 | 0.927 | 0.918 | 0.790 | 0.784 | 0.913 | 0.916 |
HyperIQA[ | 0.725 | 0.757 | 0.919 | 0.914 | 0.699 | 0.744 | 0.939 | 0.939 |
SDENet (本文) | 0.621 | 0.707 | 0.929 | 0.917 | 0.637 | 0.665 | 0.946 | 0.944 |
Table 6 Performance comparison of models on data with different levels of noise
模型 | 低噪声数据 | 高噪声数据 | ||||||
---|---|---|---|---|---|---|---|---|
RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | RMSE↓ | RMAE↓ | PLCC↑ | SROCC↑ | |
TANet[ | 1.092 | 0.944 | 0.866 | 0.867 | 0.955 | 0.872 | 0.890 | 0.889 |
MobileNetV2[ | 0.986 | 0.897 | 0.835 | 0.836 | 0.957 | 0.870 | 0.867 | 0.878 |
MAMIQA[ | 0.918 | 0.839 | 0.873 | 0.876 | 0.816 | 0.803 | 0.914 | 0.914 |
TReSNet[ | 0.687 | 0.710 | 0.925 | 0.921 | 0.833 | 0.797 | 0.908 | 0.915 |
DBCNN[ | 0.746 | 0.765 | 0.896 | 0.889 | 0.761 | 0.775 | 0.917 | 0.917 |
ResNet18[ | 0.696 | 0.753 | 0.927 | 0.918 | 0.790 | 0.784 | 0.913 | 0.916 |
HyperIQA[ | 0.725 | 0.757 | 0.919 | 0.914 | 0.699 | 0.744 | 0.939 | 0.939 |
SDENet (本文) | 0.621 | 0.707 | 0.929 | 0.917 | 0.637 | 0.665 | 0.946 | 0.944 |
[1] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
[2] | 鄢杰斌, 方玉明, 刘学林. 图像质量评价研究综述—从失真的角度[J]. 中国图象图形学报, 2022, 27(5): 1430-1466. |
YAN J B, FANG Y M, LIU X L. The review of distortion-related image quality assessment[J]. Journal of Image and Graphics, 2022, 27(5): 1430-1466 (in Chinese). | |
[3] | 李娜, 顾庆, 姜枫, 等. 一种基于卷积神经网络的砂岩显微图像特征表示方法[J]. 软件学报, 2020, 31(11): 3621-3639. |
LI N, GU Q, JIANG F, et al. Feature representation method of microscopic sandstone images based on convolutional neural network[J]. Journal of Software, 2020, 31(11): 3621-3639 (in Chinese). | |
[4] | 易令, 吕忠元, 丁进良, 等. 面向原油总氢物性预测的数据扩增预处理方法[J]. 控制与决策, 2018, 33(12): 2153-2160. |
YI L, LYU Z Y, DING J L, et al. Data pretreatment approach for crude oil hydrogen properties prediction[J]. Control and Decision, 2018, 33(12): 2153-2160 (in Chinese). | |
[5] | 李琦. 基于深度学习的布匹缺陷检测算法研究[D]. 大连: 大连理工大学, 2022. |
LI Q. Research on fabric defect detection algorithm based on deep learning[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). | |
[6] | 柴伟佳, 王连明. 卷积神经网络的多字体汉字识别[J]. 中国图象图形学报, 2018, 23(3): 410-417. |
CHAI W J, WANG L M. Recognition of Chinese characters using deep convolutional neural network[J]. Journal of Image and Graphics, 2018, 23(3): 410-417 (in Chinese). | |
[7] | KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. (2022-12-10)[2024-04-16]. https://www.arxiv.org/abs/1312.6114v10. |
[8] | CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65. |
[9] | KAMATA H, MUKUTA Y, HARADA T. Fully spiking variational autoencoder[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 7059-7067. |
[10] | DENTON E, CHINTALA S, SZLAM A, et al. Deep generative image models using a Laplacian pyramid of adversarial networks[C]// The 28th International Conference on Neural Information Processing Systems. New York: ACM, 2015: 1486-1494. |
[11] |
杨春玲, 杨雅静. 基于多尺度特征逐层融合深度神经网络的无参考图像质量评价方法[J]. 华南理工大学学报(自然科学版), 2022, 50(4): 81-89, 141.
DOI |
YANG C L, YANG Y J. A deep neural network based on layer-by-layer fusion of multi-scale features for no-reference image quality assessment[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(4): 81-89, 141 (in Chinese). | |
[12] | JIANG W, LI L T, MA Y, et al. Image quality assessment with transformers and multi-metric fusion modules[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 1804-1808. |
[13] | SAHA A, MISHRA S, BOVIK A C. Re-IQA: unsupervised learning for image quality assessment in the wild[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 5846-5855. |
[14] | 史再峰, 佟博文, 孔凡宁, 等. 基于双重注意力和分层感知表征的IQA方法[J]. 天津大学学报 (自然科学与工程技术版), 2024, 57(3): 234-243. |
SHI Z F, TONG B W, KONG F N, et al. Image quality assessment method based on dual attention and hierarchical perceptual representation[J]. Journal of Tianjin University (Science and Technology), 2024, 57(3): 234-243 (in Chinese). | |
[15] | HE G, WANG Y, XU L, et al. Focused feature differentiation network for image quality assessment[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 1799-1803. |
[16] | ZHANF G J, CUI K W, HUNG T Y, et al. Defect-GAN: high-fidelity defect synthesis for automated defect inspection[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 2523-2533. |
[17] | NIU S L, LI B, WANG X G, et al. Defect image sample generation with GAN for improving defect recognition[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1611-1622. |
[18] | NIU S L, LI B, WANG X G, et al. Region- and strength-controllable GAN for defect generation and segmentation in industrial images[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4531-4541. |
[19] | YANG B Y, LIU Z Y, DUAN G F, et al. Mask2Defect: a prior knowledge-based data augmentation method for metal surface defect inspection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6743-6755. |
[20] | ZHANG Y L, WANG Y L, JIANG Z Q, et al. Diversifying tire-defect image generation based on generative adversarial network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5007312. |
[21] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[22] | YU F, KOLTUN V, FUNKHOUSER T. Dilated residual networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 636-644. |
[23] | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5987-5995. |
[24] | 郭琪周, 袁春. 基于空间语义信息特征融合的目标检测与分割[J]. 软件学报, 2023, 34(6): 2776-2788. |
GUO Q Z, YUAN C. Leveraging spatial-semantic information in object detection and segmentation[J]. Journal of Software, 2023, 34(6): 2776-2788 (in Chinese). | |
[25] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[26] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. (2017-01-23) [2024-04-16]. https://arxiv.org/abs/1701.06659. |
[27] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666 (in Chinese). | |
[28] | 吕佳, 孙亚南, 许鹏程. 条带池化注意力的实时语义分割算法[J]. 计算机辅助设计与图形学学报, 2023, 35(9): 1395-1404. |
LYU J, SUN Y N, XU P C. Stripe pooling attention for real-time semantic segmentation[J]. Journal of Computer- Aided Design & Computer Graphics, 2023, 35(9): 1395-1404 (in Chinese). | |
[29] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3141-3149. |
[30] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
DOI PMID |
[31] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[32] | CHEN Y P, KALANTIDIS Y, LI J S, et al. A2-Nets: double attention networks[C]// The 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 350-359. |
[33] | 唐祎玲, 江顺亮, 徐少平, 等. 考虑双目竞争视觉现象的非对称失真立体图像质量评价方法[J]. 中国图象图形学报, 2023, 28(10): 3049-3063. |
TANG Y L, JIANG S L, XU S P, et al. Binocular rivalry-based stereoscopic images quality assessment relevant to its asymmetric and distorted contexts[J]. Journal of Image and Graphics, 2023, 28(10): 3049-3063 (in Chinese). | |
[34] | ZHANG W X, ZHAI G T, WEI Y, et al. Blind image quality assessment via vision-language correspondence: a multitask learning perspective[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14071-14081. |
[35] | 杨岸霖, 蔡永香, 胡华科, 等. MR-GA: 一种基于实例分割的地下排水管道缺陷评估方法[J]. 给水排水, 2024, 60(6): 137-145. |
YANG A L, CAI Y X, HU H K, et al. MR-GA: an instance segmentation-based method for assessing underground drainage pipe defects[J]. Water & Wastewater Engineering, 2024, 60(6): 137-145 (in Chinese). | |
[36] | 倪放翊. 基于生成对抗网络的缺陷样本生成与缺陷检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
NI F Y. Research on GAN-bases defect sample generation and defect detection[D]. Harbin:Harbin Institute of Technology, 2021 (in Chinese). | |
[37] | 郭逸汀. 光谱与工艺协同感知的弧焊质量在线预测技术[D]. 南京: 南京理工大学, 2019. |
GUO Y T. Online prediction technology for arc welding quality based on spectral and process collaborative perception[D]. Nanjing: Nanjing University of Science & Technology, 2019 (in Chinese). | |
[38] | SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. |
[39] | 褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13-22. |
CHU J, CHEN Q, YANG X C. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13-22 (in Chinese). | |
[40] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[41] | SU S L, YAN Q S, ZHU Y, et al. Blindly assess image quality in the wild guided by a self-adaptive hyper network[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3664-3673. |
[42] | ZHANG W X, MA K D, YAN J, et al. Blind image quality assessment using a deep bilinear convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 36-47. |
[43] | GOLESTANEH S A, DADSETAN S, KITANI K M. No-reference image quality assessment via transformers, relative ranking, and self-consistency[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 3989-3999. |
[44] | HE S, ZHANG Y C, XIE R, et al. Rethinking image aesthetics assessment: models, datasets and benchmarks[C]// The 31st International Joint Conference on Artificial Intelligence. Vienna: IJCAI.Org, 2022: 942-948. |
[45] | YU L, LI J Y, PAKDAMAN F, et al. MAMIQA: no-reference image quality assessment based on multiscale attention mechanism with natural scene statistics[J]. IEEE Signal Processing Letters, 2023, 30: 588-592. |
[46] | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539. |
[1] | DONG Jiale, DENG Zhengjie, LI Xiyan, WANG Shiyun. Deepfake detection method based on multi-feature fusion of frequency domain and spatial domain [J]. Journal of Graphics, 2025, 46(1): 104-113. |
[2] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
[3] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[4] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
[5] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[6] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[7] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[8] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[9] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[10] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[11] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[12] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[13] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
[14] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[15] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||