Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 126-138.DOI: 10.11996/JG.j.2095-302X.2025010126
• Image Processing and Computer Vision • Previous Articles Next Articles
MENG Sihong1,2(), LIU Hao1,2, FANG Haotian1,2, SENG Bingfeng1,2, DU Zhengjun1,2(
)
Received:
2024-07-01
Accepted:
2024-11-20
Online:
2025-02-28
Published:
2025-02-14
Contact:
DU Zhengjun
About author:
First author contact:MENG Sihong (1999-),master student. Her main research interest covers image and video processing. E-mail:meng_sihong@163.com
Supported by:
CLC Number:
MENG Sihong, LIU Hao, FANG Haotian, SENG Bingfeng, DU Zhengjun. Image colorization via semantic similarity propagation[J]. Journal of Graphics, 2025, 46(1): 126-138.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010126
Fig. 2 Comparison of colorization results before and after optimization and before and after adding lightness ((a) Input image and strokes; (b) Initial semantic visualization results; (c) Results by combining the semantics and brightness of (b); (d) Optimized semantic visualization results; (e) Results obtained by combining the semantics and brightness of (d); (f) Results based only on the semantics of (d))
Fig. 4 The effect of the choice of dimensions on our colorization results and running time ((a) Input image and strokes; (b) 2 dimension; (c) 3 dimensions; (d) 5 dimensions)
Fig. 6 Comparison of colorization results and running time of ours with other edit propagation algorithms ((a) Input images and strokes; (b) Reference [1]; (c) Ours)
Fig. 7 Comparison of our algorithm with other stroke-based deep learning algorithms ((a) Input images and strokes; (b) Reference [23]; (d) Reference [33]; (d) Reference [25]; (e) Ours)
Fig. 8 Comparison of our algorithm with other deep learning algorithms ((a) Input images; (b) Reference [15]; (c) Reference [24]; (d) Reference [23]; (e) Ours)
Fig. 9 Quantitative comparison of our algorithm with other colorization algorithms ((a) Input images; (b) Reference [15]; (c) Reference [25]; (d) Reference [24]; (e) Ours)
Fig. 10 Ablation study to verify the effectiveness of semantic feature ((a) Input images; (b) Luminance only; (c) Semantics only; (d) Semantics and luminance)
分辨率 | 示例 | 加速前/s | 加速后/s |
---|---|---|---|
90×60 | 卧室 | 19.14 | 0.02 |
背影 | 18.97 | 0.03 | |
田园 | 17.82 | 0.03 | |
树屋 | 19.64 | 0.03 | |
海边 | 18.74 | 0.03 | |
平均 | 18.86 | 0.03 | |
128×85 | 卧室 | 150.89 | 0.03 |
背影 | 143.87 | 0.02 | |
田园 | 155.31 | 0.03 | |
树屋 | 154.87 | 0.03 | |
海边 | 165.28 | 0.02 | |
平均 | 154.04 | 0.03 | |
180×120 | 卧室 | 1207.19 | 0.04 |
背影 | 1195.92 | 0.05 | |
田园 | 1183.51 | 0.04 | |
树屋 | 1164.31 | 0.05 | |
海边 | 1169.94 | 0.04 | |
平均 | 1184.17 | 0.04 | |
256×171 | 卧室 | 10398.67 | 0.10 |
背影 | 10274.71 | 0.07 | |
田园 | 10904.38 | 0.09 | |
树屋 | 10566.61 | 0.12 | |
海边 | 10568.34 | 0.09 | |
平均 | 10542.54 | 0.09 |
Table 1 Running time before and after accelerating
分辨率 | 示例 | 加速前/s | 加速后/s |
---|---|---|---|
90×60 | 卧室 | 19.14 | 0.02 |
背影 | 18.97 | 0.03 | |
田园 | 17.82 | 0.03 | |
树屋 | 19.64 | 0.03 | |
海边 | 18.74 | 0.03 | |
平均 | 18.86 | 0.03 | |
128×85 | 卧室 | 150.89 | 0.03 |
背影 | 143.87 | 0.02 | |
田园 | 155.31 | 0.03 | |
树屋 | 154.87 | 0.03 | |
海边 | 165.28 | 0.02 | |
平均 | 154.04 | 0.03 | |
180×120 | 卧室 | 1207.19 | 0.04 |
背影 | 1195.92 | 0.05 | |
田园 | 1183.51 | 0.04 | |
树屋 | 1164.31 | 0.05 | |
海边 | 1169.94 | 0.04 | |
平均 | 1184.17 | 0.04 | |
256×171 | 卧室 | 10398.67 | 0.10 |
背影 | 10274.71 | 0.07 | |
田园 | 10904.38 | 0.09 | |
树屋 | 10566.61 | 0.12 | |
海边 | 10568.34 | 0.09 | |
平均 | 10542.54 | 0.09 |
示例 | 图像分辨率 | 运行时间/s |
---|---|---|
卧室( | 1280×853 | 0.58 |
背影( | 1280×853 | 0.53 |
田园( | 1280×853 | 0.40 |
小猫( | 300×199 | 0.03 |
牛群( | 1280×853 | 0.49 |
玫瑰( | 427×285 | 0.06 |
核桃( | 400×276 | 0.05 |
香蕉( | 640×960 | 0.24 |
花朵( | 853×1280 | 0.39 |
饼干( | 848×1280 | 0.44 |
陶瓷( | 1280×850 | 0.41 |
胶囊( | 1280×853 | 0.38 |
树屋( | 1280×853 | 0.44 |
月亮( | 853×1280 | 0.39 |
海边( | 1280×853 | 0.42 |
田野( | 1280×853 | 0.49 |
黄花( | 853×1280 | 0.40 |
平均 | 0.34 |
Table 2 Running time of all examples
示例 | 图像分辨率 | 运行时间/s |
---|---|---|
卧室( | 1280×853 | 0.58 |
背影( | 1280×853 | 0.53 |
田园( | 1280×853 | 0.40 |
小猫( | 300×199 | 0.03 |
牛群( | 1280×853 | 0.49 |
玫瑰( | 427×285 | 0.06 |
核桃( | 400×276 | 0.05 |
香蕉( | 640×960 | 0.24 |
花朵( | 853×1280 | 0.39 |
饼干( | 848×1280 | 0.44 |
陶瓷( | 1280×850 | 0.41 |
胶囊( | 1280×853 | 0.38 |
树屋( | 1280×853 | 0.44 |
月亮( | 853×1280 | 0.39 |
海边( | 1280×853 | 0.42 |
田野( | 1280×853 | 0.49 |
黄花( | 853×1280 | 0.40 |
平均 | 0.34 |
[1] | LEVIN A, LISCHINSKI D, WEISS Y. Colorization using optimization[C]// ACM SIGGRAPH 2004 Papers. New York: ACM, 2004: 689-694. |
[2] | HUANG Y C, TUNG Y S, CHEN J C, et al. An adaptive edge detection based colorization algorithm and its applications[C]// The 13th Annual ACM International Conference on Multimedia. New York: ACM, 2005: 351-354. |
[3] |
YATZIV L, SAPIRO G. Fast image and video colorization using chrominance blending[J]. IEEE Transactions on Image Processing, 2006, 15(5): 1120-1129.
PMID |
[4] | HEU J H, HYUN D Y, KIM C S, et al. Image and video colorization based on prioritized source propagation[C]// The 2009 16th IEEE International Conference on Image Processing. New York: IEEE Press, 2009: 465-468. |
[5] | QU Y G, WONG T T, HENG P A. Manga colorization[J]. ACM Transactions on Graphics (TOG), 2006, 25(3): 1214-1220. |
[6] | LUAN Q, WEN F, COHEN-OR D, et al. Natural image colorization[C]// The 18th Eurographics conference on Rendering Techniques. Goslar: Eurographics Association, 2007: 309-320. |
[7] | 王泽文, 张小明. 基于p-Laplace方程的图像彩色化方法[J]. 工程图学学报, 2010, 31(6): 62-67. |
WANG Z W, ZHANG X M. Image colorization based on p-Laplace equation[J]. Journal of Engineering Graphics, 2010, 31(6): 62-67 (in Chinese). | |
[8] |
田建勇, 石林江. 局部线性嵌入与模糊C-均值聚类的红外图像彩色化算法[J]. 图学学报, 2018, 39(5): 917-925.
DOI |
TIAN J Y, SHI L J. An infrared image colorization algorithm based on local linear embedding and fuzzy C-means clustering[J]. Journal of Graphics, 2018, 39(5): 917-925 (in Chinese). | |
[9] | REINHARD E, ADHIKHMIN M, GOOCH B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 34-41. |
[10] | WELSH T, ASHIKHMIN M, MUELLER K. Transferring color to greyscale images[C]// The 29th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2002: 277-280. |
[11] | IRONY R, COHEN-OR D, LISCHINSKI D. Colorization by example[C]// The 16th Eurographics Conference on Rendering Techniques. Goslar: Eurographics Association, 2005: 201-210. |
[12] | CHIA A Y S, ZHUO S J, GUPTA R K, et al. Semantic colorization with internet images[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1-8. |
[13] | GUPTA R K, CHIA A Y S, RAJAN D, et al. Image colorization using similar images[C]// The 20th ACM International Conference on Multimedia. New York: ACM, 2012: 369-378. |
[14] | CHENG Z Z, YANG Q X, SHENG B. Deep colorization[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 415-423. |
[15] | ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 649-666. |
[16] | ZHAO J J, HAN J G, SHAO L, et al. Pixelated semantic colorization[J]. International Journal of Computer Vision, 2020, 128(4): 818-834. |
[17] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[18] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[19] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 574. |
[20] | WU Y Z, WANG X T, LI Y, et al. Towards vivid and diverse image colorization with generative color prior[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14357-14366. |
[21] | KIM G, KANG K, KIM S, et al. BigColor: colorization using a generative color prior for natural images[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 350-366. |
[22] | WANG Y, XIA M H, QI L, et al. PalGAN: image colorization with palette generative adversarial networks[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 271-288. |
[23] | HUANG Z T, ZHAO N X, LIAO J. UniColor: a unified framework for multi-modal colorization with transformer[J]. ACM Transactions on Graphics (TOG), 2022, 41(6): 205. |
[24] | KANG X Y, YANG T, OUYANG W Q, et al. DDColor: towards photo-realistic image colorization via dual decoders[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 328-338. |
[25] | ZHANG R, ZHU J Y, ISOLA P, et al. Real-time user-guided image colorization with learned deep priors[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 119. |
[26] | YUN J, LEE S, PARK M, et al. iColoriT: towards propagating local hints to the right region in interactive colorization by leveraging vision transformer[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 1787-1796. |
[27] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-05-01]. https://dblp.org/db/conf/iclr/iclr2021.html#DosovitskiyB0WZ21. |
[28] | BAHNG H, YOO S, CHO W, et al. Coloring with words: Guiding image colorization through text-based palette generation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 443-459. |
[29] | WENG S C, WU H, CHANG Z, et al. L-code: language-based colorization using color-object decoupled conditions[C]// The 36th AAAI Conference on Artificial Intelligence. Washington: AAAI, 2022: 2677-2684. |
[30] | CHANG Z, WENG S C, LI Y, et al. L-CoDer: language-based colorization with color-object decoupling transformer[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 360-375. |
[31] | HE M M, CHEN D D, LIAO J, et al. Deep exemplar-based colorization[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 47. |
[32] | CONG X Y, WU Y, CHEN Q F, et al. Automatic controllable colorization via imagination[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 2609-2619. |
[33] | LIANG Z X, LI Z C, ZHOU S C, et al. Control color: multimodal diffusion-based interactive image colorization[J]. [2024-05-07]. https://arxiv.org/abs/2402.10855. |
[34] | ZHANG L M, RAO A, AGRAWALA M. Adding conditional control to text-to-image diffusion models[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 3813-3824. |
[35] | AKSOY Y, OH T H, PARIS S, et al. Semantic soft segmentation[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 72. |
[36] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 3992-4003. |
[1] | WANG Yan, ZHANG Muyu, LIU Xiuzhen. Visual interactive meaning evaluation method of movie posters based on deep learning [J]. Journal of Graphics, 2025, 46(1): 221-232. |
[2] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[3] | ZHAO Sheng, WU Xiaoqun, LIU Xin. Depth completion with large holes based on structure-guided boundary propagation [J]. Journal of Graphics, 2024, 45(3): 548-557. |
[4] | ZHOU Jingyi, ZHANG Qitong, FENG Jieqing. Hybrid-structure based multi-view 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 199-208. |
[5] | LU Nan-nan, LIU Yi-xiong, QIU Ming-kai . Zero-shot image classification based on random propagation graph convolution model [J]. Journal of Graphics, 2022, 43(4): 624-631. |
[6] |
LI Xiao-ying, YU Ya-ping.
Research on interactive design of children’s sound and painting based on multimodal sensory experience
[J]. Journal of Graphics, 2022, 43(4): 736-743.
|
[7] | XIONG Yu-long, LI Wei-shi . A fast and free interactive picking method for complex surfaces [J]. Journal of Graphics, 2021, 42(6): 957-962. |
[8] | LIU Xiao-jian, PENG Cheng, LV Yun-yun. Non-random population method for intelligent optimization of color matching design [J]. Journal of Graphics, 2021, 42(6): 1035-1042. |
[9] | HUANG Jin, ZHANG Hao, TIAN Feng. Computational model for dynamical interaction scenarios [J]. Journal of Graphics, 2021, 42(3): 359-366. |
[10] | JING Chun-hui, ZHI Jin-yi. Research on evolutionary design of interactive interface for knowledge reuse and intelligent innovation [J]. Journal of Graphics, 2021, 42(2): 332-338. |
[11] | ZHA Dong-dong, ZHANG Di,LIU Hua-yong . Construction of smooth blending of three-parameter curves and optimization of parameters [J]. Journal of Graphics, 2020, 41(5): 725-732. |
[12] | HU Shan1, JIANG Xu1, FU Kai-jie1, ZHOU Ming-yu1, LUO Yi-ming2, QIAO Zhong-lin3 . Research on experience design of interactive public guidance system based on SEM [J]. Journal of Graphics, 2020, 41(2): 204-209. |
[13] | LI Zhi, CAI Dong-na . Holographic Visualization and Interactive System Realization of Digital Flower Plants [J]. Journal of Graphics, 2019, 40(6): 1017-1023. |
[14] | WANG Hua1, LI Shen-shen1, HE Xiao-yu1, ZHU Fu-bao1, YAO Ni1, XU Ming-liang2 . Design and Implementation of Interactive Mask Erasing Animation Based on Personalized Customization [J]. Journal of Graphics, 2019, 40(3): 473-480. |
[15] | DAI Sha1,2, SI Wei-xin2,3, QIAN Yin-ling2, ZHENG Rui2, WANG Qiong2, XU Dong-liang1, PENGYan-jun4, HENG Pheng-Ann3,2 . Towards Human-Computer Interface Design for Virtual Micro Cataract Surgical System [J]. Journal of Graphics, 2019, 40(3): 565-573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||