Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 548-557.DOI: 10.11996/JG.j.2095-302X.2024030548
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
ZHAO Sheng1,2(), WU Xiaoqun1,2(
), LIU Xin1,2
Received:
2023-11-08
Accepted:
2024-02-21
Online:
2024-06-30
Published:
2024-06-12
Contact:
WU Xiaoqun (1984-), professor, Ph.D. Her main research interests cover computer graphics, digital geometry processing and image processing. E-mail:About author:
ZHAO Sheng (1996-), master student. His main research interests cover computer graphics, digital geometry processing and image processing. E-mail:winner_zs@163.com
Supported by:
CLC Number:
ZHAO Sheng, WU Xiaoqun, LIU Xin. Depth completion with large holes based on structure-guided boundary propagation[J]. Journal of Graphics, 2024, 45(3): 548-557.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030548
Fig. 2 Structure-guided fit fill direction comparison ((a) The fill direction without guidance; (b) The fill direction with structural guidance; (c) The result of boundary erosion)
参数 | m | |||
---|---|---|---|---|
h | 1 | 2 | 3 | 4 |
3 | 0.607 6 | 0.601 0 | 0.594 3 | 0.588 8 |
4 | 0.612 1 | 0.608 0 | 0.578 1 | 0.585 5 |
5 | 0.610 9 | 0.602 6 | 0.581 0 | 0.598 0 |
Table 1 Effect of structure-guided large-hole cut-and-fill parameters
参数 | m | |||
---|---|---|---|---|
h | 1 | 2 | 3 | 4 |
3 | 0.607 6 | 0.601 0 | 0.594 3 | 0.588 8 |
4 | 0.612 1 | 0.608 0 | 0.578 1 | 0.585 5 |
5 | 0.610 9 | 0.602 6 | 0.581 0 | 0.598 0 |
方法 | ai_001_001 | ai_001_003 | ai_001_004 | ai_001_006 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16.28% | 13.21% | 11.29% | 12.13% | |||||||||
SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | |
DepthComp[ | 0.992 6 | 1.134 7 | 34.214 1 | 0.997 0 | 0.920 9 | 42.095 8 | 0.993 7 | 1.237 6 | 35.842 1 | 0.995 7 | 1.241 1 | 39.453 0 |
MCBR[ | 0.982 3 | 4.002 7 | 30.032 7 | 0.983 4 | 3.302 6 | 28.429 2 | 0.978 2 | 3.299 7 | 26.074 2 | 0.982 5 | 3.322 1 | 31.888 1 |
本文算法 | 0.998 9 | 0.566 7 | 53.006 5 | 0.999 1 | 0.466 4 | 52.593 8 | 0.998 7 | 1.018 4 | 46.911 6 | 0.999 1 | 0.678 6 | 51.248 4 |
Table 2 Hypersim synthesis dataset error statistics
方法 | ai_001_001 | ai_001_003 | ai_001_004 | ai_001_006 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16.28% | 13.21% | 11.29% | 12.13% | |||||||||
SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | SSIM | RMSE | PSNR | |
DepthComp[ | 0.992 6 | 1.134 7 | 34.214 1 | 0.997 0 | 0.920 9 | 42.095 8 | 0.993 7 | 1.237 6 | 35.842 1 | 0.995 7 | 1.241 1 | 39.453 0 |
MCBR[ | 0.982 3 | 4.002 7 | 30.032 7 | 0.983 4 | 3.302 6 | 28.429 2 | 0.978 2 | 3.299 7 | 26.074 2 | 0.982 5 | 3.322 1 | 31.888 1 |
本文算法 | 0.998 9 | 0.566 7 | 53.006 5 | 0.999 1 | 0.466 4 | 52.593 8 | 0.998 7 | 1.018 4 | 46.911 6 | 0.999 1 | 0.678 6 | 51.248 4 |
方法 | Buddha | LivingRoom | Outdoor | Table | ||||
---|---|---|---|---|---|---|---|---|
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | |
M-JBU[ | 1.50 | 26.15 | 1.82 | 27.97 | 3.18 | 25.91 | 1.85 | 26.02 |
FBS[ | 1.73 | 26.15 | 2.16 | 30.99 | 2.94 | 27.09 | 2.04 | 29.77 |
JBF[ | 2.21 | 16.17 | 1.68 | 23.77 | 2.90 | 22.40 | 1.72 | 20.76 |
M-SRF[ | 1.12 | 32.17 | 1.56 | 33.31 | 2.44 | 28.01 | 1.28 | 31.71 |
本文算法 | 1.11 | 34.92 | 1.24 | 34.45 | 2.01 | 32.49 | 1.17 | 31.80 |
Table 3 Error statistics of synthetic datasets
方法 | Buddha | LivingRoom | Outdoor | Table | ||||
---|---|---|---|---|---|---|---|---|
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | |
M-JBU[ | 1.50 | 26.15 | 1.82 | 27.97 | 3.18 | 25.91 | 1.85 | 26.02 |
FBS[ | 1.73 | 26.15 | 2.16 | 30.99 | 2.94 | 27.09 | 2.04 | 29.77 |
JBF[ | 2.21 | 16.17 | 1.68 | 23.77 | 2.90 | 22.40 | 1.72 | 20.76 |
M-SRF[ | 1.12 | 32.17 | 1.56 | 33.31 | 2.44 | 28.01 | 1.28 | 31.71 |
本文算法 | 1.11 | 34.92 | 1.24 | 34.45 | 2.01 | 32.49 | 1.17 | 31.80 |
Fig. 7 Comparison of results of different algorithms in synthetic datasets ((a) Raw depth; (b) M-JBU[22]; (c) FBS[23]; (d) JBF[1]; (e) M-SRF[4]; (f) Ours)
方法 | Adirondack | Bicycle1 | Classroom1 | Couch | Sword2 | Umbrella | Piano |
---|---|---|---|---|---|---|---|
M-JBU[ | 31.99 | 34.61 | 29.04 | 31.87 | 34.29 | 31.00 | 33.54 |
FBS[ | 31.33 | 34.61 | 32.47 | 32.63 | 33.03 | 32.61 | 34.52 |
M-SRF[ | 36.13 | 35.07 | 32.80 | 33.83 | 36.78 | 35.90 | 37.55 |
本文算法 | 40.59 | 38.25 | 40.05 | 35.83 | 39.19 | 38.17 | 38.04 |
Table 4 Quantitative comparison of results of different algorithms in the Middlebury dataset
方法 | Adirondack | Bicycle1 | Classroom1 | Couch | Sword2 | Umbrella | Piano |
---|---|---|---|---|---|---|---|
M-JBU[ | 31.99 | 34.61 | 29.04 | 31.87 | 34.29 | 31.00 | 33.54 |
FBS[ | 31.33 | 34.61 | 32.47 | 32.63 | 33.03 | 32.61 | 34.52 |
M-SRF[ | 36.13 | 35.07 | 32.80 | 33.83 | 36.78 | 35.90 | 37.55 |
本文算法 | 40.59 | 38.25 | 40.05 | 35.83 | 39.19 | 38.17 | 38.04 |
方法 | 001 | 002 | 003 | 004 | ||||
---|---|---|---|---|---|---|---|---|
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | |
MCBR[ | 1.74 | 23.28 | 2.29 | 15.23 | 2.12 | 23.21 | 1.76 | 31.52 |
DepthComp[ | 1.05 | 28.17 | 2.09 | 20.40 | 1.77 | 25.60 | 1.45 | 30.88 |
本文算法 | 0.95 | 28.49 | 1.91 | 25.80 | 1.70 | 33.01 | 1.09 | 38.63 |
Table 5 Error statistics of SUNRGBD datasets
方法 | 001 | 002 | 003 | 004 | ||||
---|---|---|---|---|---|---|---|---|
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | |
MCBR[ | 1.74 | 23.28 | 2.29 | 15.23 | 2.12 | 23.21 | 1.76 | 31.52 |
DepthComp[ | 1.05 | 28.17 | 2.09 | 20.40 | 1.77 | 25.60 | 1.45 | 30.88 |
本文算法 | 0.95 | 28.49 | 1.91 | 25.80 | 1.70 | 33.01 | 1.09 | 38.63 |
方法 | RMSE | 是否需要训练 |
---|---|---|
RGB-Guidance[ | 0.260 | 是 |
MSG-CHN[ | 0.190 | 是 |
DM-LRN[ | 0.205 | 是 |
RGB-D Fusion GAN[ | 0.139 | 是 |
CompletionFormer[ | 0.127 | 是 |
本文 | 0.181 | 否 |
Table 6 Compare with deep learning algorithms
方法 | RMSE | 是否需要训练 |
---|---|---|
RGB-Guidance[ | 0.260 | 是 |
MSG-CHN[ | 0.190 | 是 |
DM-LRN[ | 0.205 | 是 |
RGB-D Fusion GAN[ | 0.139 | 是 |
CompletionFormer[ | 0.127 | 是 |
本文 | 0.181 | 否 |
数据集 | 训练集/张 | 验证集/张 |
---|---|---|
NYUv2[ | 50 000 | 654 |
KITTI[ | 86 898 | 1000 |
混合数据 | 136 898 | 600 |
Table 7 Introduction of datasets
数据集 | 训练集/张 | 验证集/张 |
---|---|---|
NYUv2[ | 50 000 | 654 |
KITTI[ | 86 898 | 1000 |
混合数据 | 136 898 | 600 |
方法 | RMSE | 是否需要训练 |
---|---|---|
RGB-Guidance[ | 0.327 | 是 |
MS-CHN[ | 0.251 | 是 |
DM-LRN[ | 0.290 | 是 |
RGB-D Fusion GAN[ | 0.276 | 是 |
CompletionFormer[ | 0.293 | 是 |
本文 | 0.195 | 否 |
Table 8 Compare with deep learning algorithms under mixed data
方法 | RMSE | 是否需要训练 |
---|---|---|
RGB-Guidance[ | 0.327 | 是 |
MS-CHN[ | 0.251 | 是 |
DM-LRN[ | 0.290 | 是 |
RGB-D Fusion GAN[ | 0.276 | 是 |
CompletionFormer[ | 0.293 | 是 |
本文 | 0.195 | 否 |
[1] |
LE A V, JUNG S W, WON C S. Directional joint bilateral filter for depth images[J]. Sensors, 2014, 14(7): 11362-11378.
DOI PMID |
[2] |
万琴, 朱晓林, 陈国泉, 等. 分层联合双边滤波的深度图修复算法研究[J]. 计算机工程与应用, 2021, 57(6): 184-190.
DOI |
WAN Q, ZHU X L, CHEN G Q, et al. Research on depth map restoration algorithm based on hierarchical joint bilateral filter[J]. Computer Engineering and Applications, 2021, 57(6): 184-190 (in Chinese).
DOI |
|
[3] | QI F, HAN J Y, WANG P J, et al. Structure guided fusion for depth map inpainting[J]. Pattern Recognition Letters, 2013, 34(1): 70-76. |
[4] | WU Y T, LI T M, SHEN I C, et al. Multi-resolution shared representative filtering for real-time depth completion[EB/OL]. [2023-06-07]. https://kevincosner.github.io/publications/Wu2021MSR/paper.pdf. |
[5] | PO L M, ZHANG S H, XU X Y, et al. A new multidirectional extrapolation hole-filling method for depth-image-based rendering[C]// 2011 18th IEEE International Conference on Image Processing. New York: IEEE Press, 2011: 2589-2592. |
[6] | ATAPOUR A A, BRECKON T. DepthComp: real-time depth image completion based on prior semantic scene segmentation[C]// The British Machine Vision Conference 2017. Guildford: British Machine Vision Association, 2017: 208. 1-208.13. |
[7] | GARDUÑO-RAMÓN M A, TEROL-VILLALOBOS I R, OSORNIO-RIOS R A, et al. A new method for inpainting of depth maps from time-of-flight sensors based on a modified closing by reconstruction algorithm[J]. Journal of Visual Communication and Image Representation, 2017, 47: 36-47. |
[8] | CHENG X J, WANG P, YANG R G. Learning depth with convolutional spatial propagation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(10): 2361-2379. |
[9] | CHENG X J, WANG P, GUAN C Y, et al. CSPN++: learning context and resource aware convolutional spatial propagation networks for depth completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10615-10622. |
[10] | LIN Y K, CHENG T, ZHONG Q, et al. Dynamic spatial propagation network for depth completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2): 1638-1646. |
[11] | WANG H W, WANG M Y, CHE Z P, et al. RGB-depth fusion GAN for indoor depth completion[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 6209-6218. |
[12] | ZHANG Y M, GUO X D, POGGI M, et al. CompletionFormer: depth completion with convolutions and vision transformers[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 18527-18536. |
[13] | SUZUKI S, BE K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32-46. |
[14] | SCHARSTEIN D, HIRSCHMÜLLER H, KITAJIMA Y, et al. High-resolution stereo datasets with subpixel-accurate ground truth[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 31-42. |
[15] | ROBERTS M, RAMAPURAM J, RANJAN A, et al. Hypersim: a photorealistic synthetic dataset for holistic indoor scene understanding[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 10912-10922. |
[16] | SILBERMAN N, FERGUS R. Indoor scene segmentation using a structured light sensor[C]// 2011 IEEE International Conference on Computer Vision Workshops. New York: IEEE Press, 2011: 601-608. |
[17] | SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]// European Conference on Computer Vision. Heidelberg: Springer, 2012: 746-760. |
[18] | SONG S R, LICHTENBERG S P, XIAO J X. SUN RGB-D: a RGB-D scene understanding benchmark suite[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 567-576. |
[19] | JANOCH A, KARAYEV S, JIA Y Q, et al. A category-level 3-D object dataset: putting the Kinect to work[C]// 2011 IEEE International Conference on Computer Vision Workshops. New York: IEEE Press, 2011: 1168-1174. |
[20] | XIAO J X, OWENS A, TORRALBA A. SUN3D: a database of big spaces reconstructed using SfM and object labels[C]// 2013 IEEE International Conference on Computer Vision. New York: IEEE Press, 2013: 1625-1632. |
[21] | UHRIG J, SCHNEIDER N, SCHNEIDER L, et al. Sparsity invariant CNNs[C]// 2017 International Conference on 3D Vision. New York: IEEE Press, 2017: 11-20. |
[22] | RICHARDT C, STOLL C, DODGSON N A, et al. Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos[J]. Computer Graphics Forum, 2012, 31(2pt1): 247-256. |
[23] | BARRON J T, POOLE B. The fast bilateral solver[C]// European Conference on Computer Vision. Cham: Springer, 2016: 617-632. |
[24] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3141-3149. |
[25] | LI A, YUAN Z J, LING Y G, et al. A multi-scale guided cascade hourglass network for depth completion[C]// 2020 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2020: 32-40. |
[26] | SENUSHKIN D, ROMANOV M, BELIKOV I, et al. Decoder modulation for indoor depth completion[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2021: 2181-2188. |
[27] | VAN GANSBEKE W, NEVEN D, DE BRABANDERE B, et al. Sparse and noisy LiDAR completion with RGB guidance and uncertainty[C]// 2019 16th International Conference on Machine Vision Applications. New York: IEEE Press, 2019: 1-6. |
[1] | HUANG Yuzhe, WANG Xupeng, CHEN Wenhiu, ZHOU Zhongze, ZHAO Jiaxin, WANG Yunqian. Full-contact orthopedic insole design for plantar pressure optimization [J]. Journal of Graphics, 2024, 45(4): 868-878. |
[2] | WANG Fenghong, CHEN Dailin, GAO Ziting, WEN Zhaocheng. The effect of spatial location of HUD’s road guidance on novice drivers [J]. Journal of Graphics, 2024, 45(4): 856-867. |
[3] | ZOU Yakun, CHEN Xianchuan, TAN Yi, LIN Yongfeng, ZHANG Yafei. Automated detection of truss geometric quality based on BIM and 3D laser scanning [J]. Journal of Graphics, 2024, 45(4): 845-855. |
[4] | ZHANG Ji, CUI Wenshuai, ZHANG Ronghua, WANG Wenbin, LI Yaqi. A text-driven 3D scene editing method based on key views [J]. Journal of Graphics, 2024, 45(4): 834-844. |
[5] | HOU Wenjun, GUO Yuyang, LI Tong. Research on information interactive application of holographic map in large public places [J]. Journal of Graphics, 2024, 45(4): 827-833. |
[6] | ZHU Baoxu, LIU Mandan, ZHANG Wenting, XIE Lizhi. Full process generation method of high-resolution face texture map [J]. Journal of Graphics, 2024, 45(4): 814-826. |
[7] | GONG Chenchen, CAO Li, ZHANG Tengteng, WU Yize. High-quality texture reconstruction method for architectural painted patterns [J]. Journal of Graphics, 2024, 45(4): 804-813. |
[8] | LIANG Chengwu, YANG Jie, HU Wei, JIANG Songqi, QIAN Qiyang, HOU Ning. Temporal dynamic frame selection and spatio-temporal graph convolution for interpretable skeleton-based action recognition [J]. Journal of Graphics, 2024, 45(4): 791-803. |
[9] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[10] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[11] | LI Songyang, WANG Xueting, CHEN Xianglong, CHEN Enqing. Human action recognition based on skeleton dynamic temporal filter [J]. Journal of Graphics, 2024, 45(4): 760-769. |
[12] | GONG Yongchao, SHEN Xukun. A deep architecture for reciprocal object detection and instance segmentation [J]. Journal of Graphics, 2024, 45(4): 745-759. |
[13] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[14] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[15] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||