Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 59-69.DOI: 10.11996/JG.j.2095-302X.2025010059
• Image Processing and Computer Vision • Previous Articles Next Articles
YUAN Chao(), ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui(
)
Received:
2024-08-02
Accepted:
2024-09-23
Online:
2025-02-28
Published:
2025-02-14
Contact:
CHEN Rui
About author:
First author contact:YUAN Chao (1985-), associate professor, Ph.D. His main research interests cover computer vision and intelligent control of multi-axis manipulator, etc. E-mail:chaoyuan@ncepu.edu.cn
Supported by:
CLC Number:
YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes[J]. Journal of Graphics, 2025, 46(1): 59-69.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010059
Method | Input | SUN RGB-D | ScanNet V2 | ||
---|---|---|---|---|---|
mAP @0.25 | mAP @0.50 | mAP @0.25 | mAP @0.50 | ||
DSS[ | Geo+RGB | 42.1 | - | 15.2 | 6.8 |
2D-driven[ | Geo+RGB | 45.1 | - | - | - |
F-PointNet[ | Geo+RGB | 54.0 | - | 19.8 | 10.8 |
HGNet[ | Geo only | 61.6 | - | 61.3 | 34.4 |
RGNet[ | Geo only | 59.2 | - | 48.5 | 26.0 |
MLCVNet[ | Geo only | 59.8 | - | 64.7 | 42.1 |
3DETR[ | Geo only | 59.1 | 32.7 | 65.0 | 47.0 |
Pointformer[ | Geo only | 61.1 | - | 64.1 | 42.6 |
BRNet[ | Geo only | 61.1 | 43.7 | 66.1 | 50.9 |
H3DNet[ | Geo only | 60.1 | 39.0 | 67.2 | 48.1 |
PBNet[ | Geo only | - | - | 69.3 | 60.1 |
VoteNet[ | Geo only | 57.7 | 32.9 | 58.6 | 33.5 |
Ours | Geo only | 62.7 | 39.3 | 70.1 | 50.9 |
Table 1 Performance comparison with SOTA 3D object detection networks on SUN RGB-D validation set and ScanNet V2 validation set
Method | Input | SUN RGB-D | ScanNet V2 | ||
---|---|---|---|---|---|
mAP @0.25 | mAP @0.50 | mAP @0.25 | mAP @0.50 | ||
DSS[ | Geo+RGB | 42.1 | - | 15.2 | 6.8 |
2D-driven[ | Geo+RGB | 45.1 | - | - | - |
F-PointNet[ | Geo+RGB | 54.0 | - | 19.8 | 10.8 |
HGNet[ | Geo only | 61.6 | - | 61.3 | 34.4 |
RGNet[ | Geo only | 59.2 | - | 48.5 | 26.0 |
MLCVNet[ | Geo only | 59.8 | - | 64.7 | 42.1 |
3DETR[ | Geo only | 59.1 | 32.7 | 65.0 | 47.0 |
Pointformer[ | Geo only | 61.1 | - | 64.1 | 42.6 |
BRNet[ | Geo only | 61.1 | 43.7 | 66.1 | 50.9 |
H3DNet[ | Geo only | 60.1 | 39.0 | 67.2 | 48.1 |
PBNet[ | Geo only | - | - | 69.3 | 60.1 |
VoteNet[ | Geo only | 57.7 | 32.9 | 58.6 | 33.5 |
Ours | Geo only | 62.7 | 39.3 | 70.1 | 50.9 |
Method | Cab | Bed | Chair | Sofa | Table | Door | Wind | Bkshf | Pic | Cntr |
---|---|---|---|---|---|---|---|---|---|---|
VoteNet[ | 38.10 | 87.92 | 56.13 | 89.62 | 58.77 | 57.13 | 37.20 | 54.70 | 7.83 | 88.71 |
MLCVNet[ | 42.45 | 88.84 | 89.98 | 87.40 | 63.50 | 56.93 | 46.98 | 56.94 | 11.94 | 63.94 |
Pointformer[ | 46.70 | 88.40 | 90.50 | 88.70 | 65.70 | 55.00 | 47.70 | 55.80 | 18.00 | 63.80 |
H3DNet[ | 49.40 | 88.60 | 91.80 | 90.20 | 64.90 | 61.00 | 51.90 | 54.90 | 18.60 | 62.00 |
Group-free[ | 52.10 | 91.90 | 93.60 | 88.00 | 70.70 | 60.70 | 53.70 | 62.40 | 16.10 | 58.50 |
Ours | 52.44 | 92.06 | 94.13 | 92.11 | 65.31 | 63.77 | 53.76 | 61.45 | 33.89 | 62.10 |
Method | Desk | Curt | Fridg | Showr | Toil | Sink | Bath | Gabgb | mAP | |
VoteNet[ | 71.69 | 47.23 | 45.37 | 47.32 | 94.94 | 44.62 | 92.11 | 36.27 | 58.65 | |
MLCVNet[ | 76.05 | 56.72 | 60.86 | 65.91 | 98.33 | 59.18 | 87.22 | 47.89 | 64.48 | |
Pointformer[ | 69.10 | 55.40 | 48.50 | 66.20 | 98.90 | 61.50 | 86.70 | 47.40 | 64.10 | |
H3DNet[ | 75.90 | 57.30 | 57.20 | 75.30 | 97.90 | 67.40 | 92.50 | 53.60 | 67.20 | |
Group-free[ | 80.90 | 67.90 | 47.00 | 76.30 | 99.60 | 72.00 | 95.30 | 56.40 | 69.10 | |
Ours | 79.63 | 56.83 | 62.06 | 82.74 | 99.85 | 62.78 | 90.01 | 56.89 | 70.10 |
Table 2 Results comparison with other methods on the ScanNet V2 validation set (The evaluation metric is the average precision with 0.25 IOU threshold)
Method | Cab | Bed | Chair | Sofa | Table | Door | Wind | Bkshf | Pic | Cntr |
---|---|---|---|---|---|---|---|---|---|---|
VoteNet[ | 38.10 | 87.92 | 56.13 | 89.62 | 58.77 | 57.13 | 37.20 | 54.70 | 7.83 | 88.71 |
MLCVNet[ | 42.45 | 88.84 | 89.98 | 87.40 | 63.50 | 56.93 | 46.98 | 56.94 | 11.94 | 63.94 |
Pointformer[ | 46.70 | 88.40 | 90.50 | 88.70 | 65.70 | 55.00 | 47.70 | 55.80 | 18.00 | 63.80 |
H3DNet[ | 49.40 | 88.60 | 91.80 | 90.20 | 64.90 | 61.00 | 51.90 | 54.90 | 18.60 | 62.00 |
Group-free[ | 52.10 | 91.90 | 93.60 | 88.00 | 70.70 | 60.70 | 53.70 | 62.40 | 16.10 | 58.50 |
Ours | 52.44 | 92.06 | 94.13 | 92.11 | 65.31 | 63.77 | 53.76 | 61.45 | 33.89 | 62.10 |
Method | Desk | Curt | Fridg | Showr | Toil | Sink | Bath | Gabgb | mAP | |
VoteNet[ | 71.69 | 47.23 | 45.37 | 47.32 | 94.94 | 44.62 | 92.11 | 36.27 | 58.65 | |
MLCVNet[ | 76.05 | 56.72 | 60.86 | 65.91 | 98.33 | 59.18 | 87.22 | 47.89 | 64.48 | |
Pointformer[ | 69.10 | 55.40 | 48.50 | 66.20 | 98.90 | 61.50 | 86.70 | 47.40 | 64.10 | |
H3DNet[ | 75.90 | 57.30 | 57.20 | 75.30 | 97.90 | 67.40 | 92.50 | 53.60 | 67.20 | |
Group-free[ | 80.90 | 67.90 | 47.00 | 76.30 | 99.60 | 72.00 | 95.30 | 56.40 | 69.10 | |
Ours | 79.63 | 56.83 | 62.06 | 82.74 | 99.85 | 62.78 | 90.01 | 56.89 | 70.10 |
Method | DFC | RMLP | FSA | SUN RGB-D | ScanNet V2 | ||
---|---|---|---|---|---|---|---|
mAP @0.25 | mAP @0.50 | mAP @0.25 | mAP @0.50 | ||||
Baseline | - | - | - | 57.7 | 32.9 | 58.6 | 33.5 |
A | √ | - | - | 60.1 | 37.3 | 66.6 | 46.9 |
B | √ | √ | - | 61.3 | 37.8 | 68.4 | 48.0 |
C | - | - | √ | 58.2 | 33.7 | 62.4 | 39.9 |
D | √ | √ | √ | 62.7 | 39.3 | 70.1 | 50.9 |
Table 3 Ablation studies about different modules
Method | DFC | RMLP | FSA | SUN RGB-D | ScanNet V2 | ||
---|---|---|---|---|---|---|---|
mAP @0.25 | mAP @0.50 | mAP @0.25 | mAP @0.50 | ||||
Baseline | - | - | - | 57.7 | 32.9 | 58.6 | 33.5 |
A | √ | - | - | 60.1 | 37.3 | 66.6 | 46.9 |
B | √ | √ | - | 61.3 | 37.8 | 68.4 | 48.0 |
C | - | - | √ | 58.2 | 33.7 | 62.4 | 39.9 |
D | √ | √ | √ | 62.7 | 39.3 | 70.1 | 50.9 |
Fig. 6 The visual results of the method A on the SUN RGB-D and ScanNet V2 validation set ((a) SUN RGB-D validation set; (b) ScanNet V2 validation set)
Method | Cab | Bed | Chair | Sofa | Table | Door | Wind | Bkshf | Pic | Cntr |
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 38.10 | 87.92 | 56.13 | 89.62 | 58.77 | 57.13 | 37.20 | 54.70 | 7.83 | 88.71 |
A | 52.35 | 89.37 | 89.68 | 90.39 | 62.23 | 56.26 | 51.58 | 56.37 | 30.58 | 53.84 |
Method | Desk | Curt | Fridg | Showr | Toil | Sink | Bath | Gabgb | mAP | |
Baseline | 71.69 | 47.23 | 45.37 | 47.32 | 94.94 | 44.62 | 92.11 | 36.27 | 58.65 | |
A | 72.73 | 56.14 | 56.65 | 80.34 | 98.6 | 60.63 | 91.48 | 49.48 | 66.59 |
Table 4 Performance of the DFC block on the ScanNet V2 validation set
Method | Cab | Bed | Chair | Sofa | Table | Door | Wind | Bkshf | Pic | Cntr |
---|---|---|---|---|---|---|---|---|---|---|
Baseline | 38.10 | 87.92 | 56.13 | 89.62 | 58.77 | 57.13 | 37.20 | 54.70 | 7.83 | 88.71 |
A | 52.35 | 89.37 | 89.68 | 90.39 | 62.23 | 56.26 | 51.58 | 56.37 | 30.58 | 53.84 |
Method | Desk | Curt | Fridg | Showr | Toil | Sink | Bath | Gabgb | mAP | |
Baseline | 71.69 | 47.23 | 45.37 | 47.32 | 94.94 | 44.62 | 92.11 | 36.27 | 58.65 | |
A | 72.73 | 56.14 | 56.65 | 80.34 | 98.6 | 60.63 | 91.48 | 49.48 | 66.59 |
Layer | ScanNet V2 | |
---|---|---|
mAP@0.25 | mAP@0.50 | |
1 | 67.2 | 47.5 |
2 | 68.4 | 48.0 |
3 | 67.8 | 47.2 |
Table 5 Ablation studies about the number of RMLP module layers
Layer | ScanNet V2 | |
---|---|---|
mAP@0.25 | mAP@0.50 | |
1 | 67.2 | 47.5 |
2 | 68.4 | 48.0 |
3 | 67.8 | 47.2 |
Fig. 7 The visual results of the method B on the SUN RGB-D and ScanNet V2 validation set ((a) SUN RGB-D validation set; (b) ScanNet V2 validation set)
Fig. 8 The visual results of the method C on the SUN RGB-D and ScanNet V2 validation set ((a) SUN RGB-D validation set; (b) ScanNet V2 validation set)
Fig. 9 The visual results of ablation studies on the SUN RGB-D validation set ((a) Original drawing; (b) Ground truth; (c) The baseline model; (d) Model A; (e) Model B; (f) Model D)
[1] | MCCORMAC J, CLARK R, BLOESCH M, et al. Fusion++: volumetric object-level SLAM[C]// 2018 International Conference on 3D Vision. New York: IEEE Press, 2018: 32-41. |
[2] | WANG C, XU D F, ZHU Y K, et al. DenseFusion: 6D object pose estimation by iterative dense fusion[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 3338-3347. |
[3] | PARK Y, LEPETIT V, WOO W. Multiple 3D object tracking for augmented reality[C]// 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2008: 117-120. |
[4] | 张旭, 王智, 崔粲, 等. 二维激光雷达定位建图系统设计与实现[J]. 光学技术, 2019, 45(5): 596-600. |
ZHANG X, WANG Z, CUI C, et al. Design and implementation of 2D lidar positioning and mapping system[J]. Optical Technique, 2019, 45(5): 596-600 (in Chinese). | |
[5] | ZHOU Y, TUZEL O. VoxeLNet: end-to-end learning for point cloud based 3d object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4490-4499. |
[6] | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 12689-12697. |
[7] | HE C H, ZENG H, HUANG J Q, et al. Structure aware single-stage 3D object detection from point cloud[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11870-11879. |
[8] | YE M S, XU S J, CAO T Y. HVNet: hybrid voxel network for lidar based 3d object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1628-1637. |
[9] | QI C R, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[10] | QI C R, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
[11] | YANG Z T, SUN Y A, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11037-11045. |
[12] | SHI S S, WANG X G, LI H S. PointrCNN: 3D object proposal generation and detection from point cloud[C]// Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 770-779. |
[13] | QI C R, OR L, HE K M, et al. Deep Hough voting for 3d object detection in point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9276-9285. |
[14] |
周锐闯, 田瑾, 闫丰亭, 等. 融合外部注意力和图卷积的点云分类模型[J]. 图学学报, 2023, 44(6): 1162-1172.
DOI |
ZHOU R C, TIAN J, YAN F T, et al. Point cloud classification model incorporating external attention and graph convolution[J]. Journal of Graphics, 2023, 44(6): 1162-1172 (in Chinese). | |
[15] | XIE Q, LAI Y K, WU J, et al. MLCVNet: multi-level context VoteNet for 3D object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10444-10453. |
[16] | NOH J, LEE S, HAM B. HVPR: hybrid voxel-point representation for single-stage 3D object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14600-14609. |
[17] | NIE J H, HE Z W, YANG Y X, et al. GLT-T: global-local transformer voting for 3D single object tracking in point clouds[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: PKP Press, 2023: 1957-1965. |
[18] | PAN X R, XIA Z F, SONG S J, et al. 3D object detection with Pointformer[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7459-7468. |
[19] | 周静, 胡怡宇, 黄心汉. 形状补全引导的Transformer点云目标检测方法[J]. 智能系统学报, 2023, 18(4): 731-742. |
ZHOU J, HU Y Y, HUANG X H. Shape completion-guided Transformer point cloud object detection method[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 731-742 (in Chinese). | |
[20] | XU M T, DING R Y, ZHAO H S, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 3172-3181. |
[21] | LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 8887-8896. |
[22] | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6410-6419. |
[23] | MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2202.07123?context=cs. |
[24] |
梁奥, 李峙含, 花海洋. PointMLP-FD: 基于多级自适应下采样的点云分类模型[J]. 图学学报, 2023, 44(1): 112-119.
DOI |
LIANG A, LI Z H, HUA H Y. PointMLP-FD: a point cloud classification model based on multi-level adaptive downsampling[J]. Journal of Graphics, 2023, 44(1): 112-119 (in Chinese).
DOI |
|
[25] | 杨积升, 章云, 李东. 点云目标检测残差投票网络[J]. 广东工业大学学报, 2022, 39(1): 56-62. |
YANG J S, ZHANG Y, LI D. A residual neural network with voting for 3D object detection in point clouds[J]. Journal of Guangdong University of Technology, 2022, 39(1): 56-62 (in Chinese). | |
[26] | 董雯, 林靖宇. 基于语义特征的3D点云室内目标检测[J]. 计算机与数字工程, 2023, 51(6): 1285-1290. |
DONG W, LIN J Y. 3D point cloud indoor object detection based on semantic features[J]. Computer & Digital Engineering, 2023, 51(6): 1285-1290 (in Chinese). | |
[27] | 王婧暄. 面向机器人自动焊接的工件检测与扫描路径规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2023. |
WANG J X. Research on workpiece detection and scan path planning for robot automated welding[D]. Harbin:Harbin Institute of Technology, 2023 (in Chinese). | |
[28] | 李奇. 复杂室内场景三维目标文本描述方法研究[D]. 西安: 西安电子科技大学, 2022. |
LI Q. Research on 3D object caption generation in complex indoor environment[D]. Xi'an: Xidian University, 2022 (in Chinese). | |
[29] | LIANG Y, FU Y. CascadeV-Det: cascade point voting for 3D object detection[EB/OL]. [2024-07-17]. https://arxiv.org/abs/2401.07477. |
[30] | HOU H R, FING M T, WU Z J, et al. 3D object detection from point cloud via voting step diffusion[EB/OL]. [2024-06-02]. https://ieeexplore.ieee.org/document/10602535. |
[31] | 张新良, 付陈琳, 赵运基. 扩展点态卷积网络的点云分类分割模型[J]. 中国图象图形学报, 2020, 25(8): 1551-1557. |
ZHANG X L, FU C L, ZHAO Y J. Extended pointwise convolution network model for point cloud classification and segmentation[J]. Journal of Image and Graphics, 2020, 25(8): 1551-1557 (in Chinese). | |
[32] |
杨军, 党吉圣. 基于上下文注意力CNN的三维点云语义分割[J]. 通信学报, 2020, 41(7): 195-203.
DOI |
YANG J, DANG J S. Semantic segmentation of 3D point cloud based on contextual attention CNN[J]. Journal on Communications, 2020, 41(7): 195-203 (in Chinese).
DOI |
|
[33] | DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]// 2017 IEEE CVFCVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2432-2443. |
[34] | SONG S R, XIAO J X. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]// 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 808-816. |
[35] | LAHOUD J, GHANEM B. 2D-driven 3d object detection in RGB-D images[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 4632-4640. |
[36] | QI C R, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 918-927. |
[37] | CHEN J T, LEI B W, SONG Q Y, et al. A hierarchical graph network for 3D object detection on point clouds[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 389-398. |
[38] |
FENG M T, GILANI S Z, WANG Y N, et al. Relation graph network for 3d object detection in point clouds[J]. IEEE Transactions on Image Processing, 2021, 30: 92-107.
DOI PMID |
[39] | WANG Y, GUIZILINI V C, ZHANG T, et al. DETR3D: 3D object detection from multi-view images via 3D-to-2D queries[EB/OL]. [2024-06-02]. https://proceedings.mlr.press/v164/wang22b.html. |
[40] | CHENG B W, SHENG L, SHI S S, et al. Back-tracing representative points for voting-based 3D object detection in point clouds[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 8959-8968. |
[41] | ZHANG Z W, SUN B, YANG H T, et al. H3DNET: 3D object detection using hybrid geometric primitives[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 311-329. |
[42] | ZHAO W G, YAN Y Y, YANG C L, et al. Divide and conquer: 3D point cloud instance segmentation with point-wise binarization[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 562-571. |
[43] | LIU Z, ZHANG Z, CAO Y, et al. Group-free 3D object detection via transformers[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 2929-2938. |
[1] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
[2] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[3] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[4] | SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning [J]. Journal of Graphics, 2025, 46(1): 81-93. |
[5] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[6] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[7] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[8] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[9] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[10] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[11] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
[12] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[13] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[14] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[15] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||