Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 818-825.DOI: 10.11996/JG.j.2095-302X.2025040818
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
LENG Juelin1,2(), XU Quan1,2, BAO Xianfeng1,2
Received:
2024-08-13
Revised:
2024-12-26
Online:
2025-08-30
Published:
2025-08-11
About author:
First author contact:LENG Juelin (1988-), female, associate researcher, Ph.D. Her main research interests cover computational geometry, CAD model processing, and mesh generation. E-mail:leng_juelin@163.com
Supported by:
CLC Number:
LENG Juelin, XU Quan, BAO Xianfeng. Geometric feature-based non-uniform rectangular mesh generation approach[J]. Journal of Graphics, 2025, 46(4): 818-825.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040818
模型 | 几何体/ 个 | 三角面片/ 个 | 尺寸跨度/ 量级 | 特征描述 |
---|---|---|---|---|
船 | 1 | 2656 | 2 | 细杆 |
阵列天线 | 13021 | 449636 | 3 | 薄板、小圆柱 |
无人机 | 35 | 254850 | 4 | 微带天线结构 |
Table 1 Feature description of the geometric models
模型 | 几何体/ 个 | 三角面片/ 个 | 尺寸跨度/ 量级 | 特征描述 |
---|---|---|---|---|
船 | 1 | 2656 | 2 | 细杆 |
阵列天线 | 13021 | 449636 | 3 | 薄板、小圆柱 |
无人机 | 35 | 254850 | 4 | 微带天线结构 |
模型 | 网格剖分参数 | 网格 规模/亿 | 时间/s | ||||||
---|---|---|---|---|---|---|---|---|---|
最大尺寸 | 最小尺寸 | 最大过渡比 | 特征提取 | 尺寸函数构造 | 网格线坐标计算 | 材料编号填充 | 总计 | ||
船 | 0.20 | 0.020 0 | 1.5 | 0.242 | 0.095 | 0.002 | 0.001 | 0.430 | 0.528 |
阵列天线 | 0.01 | 0.000 1 | 1.5 | 1.408 | 65.695 | 70.185 | 0.174 | 14.114 | 150.168 |
无人机 | 0.05 | 0.001 0 | 1.5 | 8.239 | 3.781 | 29.239 | 0.164 | 9.813 | 42.997 |
Table 2 Statistics of test results
模型 | 网格剖分参数 | 网格 规模/亿 | 时间/s | ||||||
---|---|---|---|---|---|---|---|---|---|
最大尺寸 | 最小尺寸 | 最大过渡比 | 特征提取 | 尺寸函数构造 | 网格线坐标计算 | 材料编号填充 | 总计 | ||
船 | 0.20 | 0.020 0 | 1.5 | 0.242 | 0.095 | 0.002 | 0.001 | 0.430 | 0.528 |
阵列天线 | 0.01 | 0.000 1 | 1.5 | 1.408 | 65.695 | 70.185 | 0.174 | 14.114 | 150.168 |
无人机 | 0.05 | 0.001 0 | 1.5 | 8.239 | 3.781 | 29.239 | 0.164 | 9.813 | 42.997 |
Fig. 14 Material filling results for the unmanned aerial vehicle model with the same mesh scale ((a) Geometric surface; (b) Non-uniform mesh; (c) Uniform mesh)
Fig. 15 The integrated coupling simulation results of the unmanned aerial vehicle model with microstrip antenna ((a) Time-domain electric field distribution; (b) Electric field distribution nearby the antenna)
[1] | LI H Y, ZHOU H J, LIU Y, et al. Massively parallel FDTD program JEMS-FDTD and its applications in platform coupling simulation[C]// 2014 International Symposium on Electromagnetic Compatibility. New York: IEEE Press, 2014: 229-233. |
[2] | LIU N, TANG H Z. A high-order accurate gas-kinetic scheme for one- and two-dimensional flow simulation[J]. Communications in Computational Physics, 2014, 15(4): 911-943. |
[3] | 周国祥, 杨明武, 侯整风, 等. 在直角坐标系下一种快速有效产生非均匀FDTD网格的算法[J]. 微波学报, 2002, 18(2): 67-70. |
ZHOU G X, YANG M W, HOU Z F, et al. A fast and efficient algorithm in generating the non-uniform FDTD mesh in cartisian coordinates[J]. Journal of Microwaves, 2002, 18(2): 67-70 (in Chinese). | |
[4] | YANG M, CHEN Y. AutoMesh: an automatically adjustable, nonuniform, orthogonal FDTD mesh generator[J]. IEEE Antennas and Propagation Magazine, 1999, 41(2): 13-19. |
[5] | KIM H S, IHM I S, CHOI K. Generation of non-uniform meshes for finite-difference time-domain simulations[J]. Journal of Electrical Engineering and Technology, 2011, 6(1): 128-132. |
[6] | BERENS M K, FLINTOFT I D, DAWSON J F. Structured mesh generation: open-source automatic nonuniform mesh generation for FDTD simulation[J]. IEEE Antennas and Propagation Magazine, 2016, 58(3): 45-55. |
[7] | YANG J, SU D L, ZHAO X Y. The study and realization of automatic mesh generation based on electromagnetic simulation of FDTD[C]//2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. New York: IEEE Press, 2009: 1242-1245. |
[8] | FERNANADES H A. Development of software for antenna analysis and design using FDTD[EB/OL]. [2025-04-30]. http://fenix.tecnico.ulisboa.pt/downloadFile/395137440464/resumo.pdf. |
[9] | QUADROS W R, VYAS V, BREWER M, et al. A computational framework for automating generation of sizing function in assembly meshing via disconnected skeletons[J]. Engineering with Computers, 2010, 26(3): 231-247. |
[10] | CHEN J J, XIAO Z F, ZHENG Y, et al. Automatic sizing functions for unstructured surface mesh generation[J]. International Journal for Numerical Methods in Engineering, 2017, 109(4): 577-608. |
[11] | LENG J L, XU Q, LIU T T, et al. Parallel and automatic mesh sizing field generation for complicated CAD models[EB/OL]. [2024-04-03]. https://doi.org/10.1108/EC-03-2023-0143. |
[12] | 杨利霞, 葛德彪, 白剑, 等. 三角面元数据模型FDTD网格生成技术[J]. 西安电子科技大学学报(自然科学版), 2007, 34(2): 298-302. |
YANG L X, GE D B, BAI J, et al. A novel FDTD modeling technique based on triangle mesh-units of an object[J]. Journal of Xidian University (Natural Science), 2007, 34(2): 298-302 (in Chinese). | |
[13] | 姜书瑞, 孔怡, 田越, 等. 基于STL文件的FDTD网格剖分算法[J]. 电波科学学报, 2021, 36(2): 231-237. |
JIANG S R, KONG Y, TIAN Y, et al. FDTD mesh generation algorithm based on STL file[J]. Chinese Journal of Radio Science, 2021, 36(2): 231-237 (in Chinese). | |
[14] | 胡晓娟, 葛德彪, 魏兵, 等. 基于目标三角面元模型生成FDTD共形网格的方法[J]. 强激光与粒子束, 2007, 19(8): 1333-1337. |
HU X J, GE D B, WEI B, et al. Conformal FDTD mesh-generating technique for objects with triangle-patch model[J]. High Power Laser and Particle Beams, 2007, 19(8): 1333-1337 (in Chinese). | |
[15] | AKENINE-MÖLLSER T. Fast 3D triangle-box overlap testing[J]. Journal of Graphics Tools, 2001, 6(1): 29-33. |
[16] | 鲍献丰, 陈晓洁, 李瀚宇, 等. 基于FDTD的时域混合方法及其在天线前门耦合数值模拟中的应用[J]. 强激光与粒子束, 2021, 33(12): 123017. |
BAO X F, CHEN X J, LI H Y, et al. FDTD-based time domain hybrid method and its application in numerical simulation of platform-antenna integrated coupling[J]. High Power Laser and Particle Beams, 2021, 33(12): 123017 (in Chinese). |
[1] | WANG Haomiao, SANG Shengju, DUAN Xiaodong, ZHANG Weihua, TAO Tiwei, MA Ting. Collaborative 3D modeling technique in virtual reality [J]. Journal of Graphics, 2024, 45(1): 169-182. |
[2] | YUE Ming-yu, GAO Xi-feng, BI Chong-ke. 3D low-poly mesh generation for building models [J]. Journal of Graphics, 2023, 44(4): 764-774. |
[3] | CAO Yi-qin, YI Hu, QIU Yi, ZHOU Yi-wei. Track fastener localization algorithm based on geometric features and the spike center point localization [J]. Journal of Graphics, 2022, 43(2): 324-332. |
[4] | ZHOU Xin-kai1, QU Chang1, LIU Su-su1,2, YAO Jian-nan1, WANG Jing-jing3 . Simulation analysis on mechanical properties of aluminium cable steel reinforced under tensile load [J]. Journal of Graphics, 2020, 41(2): 288-294. |
[5] | LI Tian-zeng, HUANG Hong-mei, CHEN Jia-jing, LAI Chun-min. A product conceptual design method based on experimental analysis and numerical simulation technology [J]. Journal of Graphics, 2020, 41(1): 132-140. |
[6] | SHI Li-wen1,2,3, XIE Lin-lin1,4, HOU Miao-le1,2,3, LI Ai-qun1,4, HU Yun-gang1,2,3, LIU Hao-yu1,2,3 . An Extraction Method of Multi-LoD Dimension Information for the Key Components of Ancient Wooden Architecture Based on Salient Geometric Features [J]. Journal of Graphics, 2019, 40(4): 651-658. |
[7] | CHEN Guo-jun, YANG Jing, CHENG Yan, YIN Peng . Real-Time Head Pose Estimation Based on RGBD [J]. Journal of Graphics, 2019, 40(4): 681-688. |
[8] | LI Tian-zeng1, HUANG Xin-yi1, HUANG Ling2 . A Product Conceptual Design Method Based on Numerical Simulation Technology [J]. Journal of Graphics, 2019, 40(2): 308-314. |
[9] | CHANG Jianmei, SONG Siwen. Numerical Analysis of Slope Stability Based on XFEM [J]. Journal of Graphics, 2017, 38(1): 128-131. |
[10] | Ji Juan, Qin Ke, Yang Ruoyu. Classification of the Detail Features for Clothes Based on HOG and Geometric Features [J]. Journal of Graphics, 2016, 37(1): 84-90. |
[11] | Kang Xinyue, Zhou Mingquan, Geng Guohua. Classification of Cultural Relic Fragments Based on Salient Geometric Features [J]. Journal of Graphics, 2015, 36(4): 551-556. |
[12] | Chen Shaochun, Li Jingshe, Zhu Rong, He Chunlai. Three-phase numerical simulation of oxygen jet impinging on molten steel bath in EAF [J]. Journal of Graphics, 2013, 34(1): 66-70. |
[13] | MENG Guan-jun, ZHAO Han, CHEN Ke. Parameter Optimization of Female Die Molding in Cold Extrusion of Spur Gear [J]. Journal of Graphics, 2010, 31(6): 100-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||