Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 1042-1049.DOI: 10.11996/JG.j.2095-302X.2025051042
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
YUE Zijia1(), WANG Wensong2, CHEN Shuangmin1(
), XIN Shiqing2, TU Changhe2
Received:
2024-11-15
Accepted:
2025-03-26
Online:
2025-10-30
Published:
2025-09-10
Contact:
CHEN Shuangmin
About author:
First author contact:YUE Zijia (2000-), master student. Her main research interest covers computer graphics. E-mail:4022110095@mails.qust.edu.cn
Supported by:
CLC Number:
YUE Zijia, WANG Wensong, CHEN Shuangmin, XIN Shiqing, TU Changhe. Geodesic distance propagation across open boundaries[J]. Journal of Graphics, 2025, 46(5): 1042-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025051042
Fig. 6 Comparison of distance fields with different priority settings ((a) The priority is the distance calculated by FMM; (b) The priority is the improved calculated distance; (c) The priority is weighted by (a) and (b) (50 % each))
Model | Vertex1 | VTP | 文献[ | FMM | Ours | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | ||
Bunny | 5 | 0.97 | 11/11 | 0.148 | 2.71 | 20/23 | 0.057 | 1.40 | 11/14 | 0.158 | 1.4+0.56 | 11/14 | 0.034 |
Camel | 18 | 1.97 | 18/18 | 0.056 | 3.87 | 30/37 | 0.021 | 1.80 | 17/28 | 0.068 | 1.8+0.63 | 18/28 | 0.016 |
Bottle | 20 | 2.03 | 20/20 | 0.136 | 3.72 | 42/46 | 0.021 | 1.81 | 17/28 | 0.149 | 1.81+0.62 | 18/28 | 0.026 |
Bimba | 32 | 2.98 | 28/28 | 0.090 | 4.67 | 49/51 | 0.021 | 2.88 | 25/41 | 0.098 | 2.88+0.98 | 25/41 | 0.009 |
Kitten | 38 | 3.26 | 34/34 | 0.130 | 5.05 | 51/57 | 0.027 | 4.18 | 29/47 | 0.132 | 4.18+0.71 | 29/47 | 0.013 |
Table 1 Performance comparison of the proposed method and existing algorithms on models with five different resolutions
Model | Vertex1 | VTP | 文献[ | FMM | Ours | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | Time/s2 | RAM3 | Eavg /%4 | ||
Bunny | 5 | 0.97 | 11/11 | 0.148 | 2.71 | 20/23 | 0.057 | 1.40 | 11/14 | 0.158 | 1.4+0.56 | 11/14 | 0.034 |
Camel | 18 | 1.97 | 18/18 | 0.056 | 3.87 | 30/37 | 0.021 | 1.80 | 17/28 | 0.068 | 1.8+0.63 | 18/28 | 0.016 |
Bottle | 20 | 2.03 | 20/20 | 0.136 | 3.72 | 42/46 | 0.021 | 1.81 | 17/28 | 0.149 | 1.81+0.62 | 18/28 | 0.026 |
Bimba | 32 | 2.98 | 28/28 | 0.090 | 4.67 | 49/51 | 0.021 | 2.88 | 25/41 | 0.098 | 2.88+0.98 | 25/41 | 0.009 |
Kitten | 38 | 3.26 | 34/34 | 0.130 | 5.05 | 51/57 | 0.027 | 4.18 | 29/47 | 0.132 | 4.18+0.71 | 29/47 | 0.013 |
Fig. 11 Our results and the results of the fast marching method are right and left, respectively. Top Left: Buddha |V|=50 K, ?=0.015%, 3 holes. Top Right: Lucy |V|=262 K, ?=0.008%, 3 holes. Bottom Left: Bottle |V|=10 K, ?=0.026%, 3 holes. Bottom Right: Bunny |V|=5 K, ?=0.034%, 2 holes
[1] | POTAMIAS R A, ZHENG J L, PLOUMPIS S, et al. Learning to generate customized dynamic 3D facial expressions[C]// The 16th Computer Vision. Cham: Springer, 2020: 278-294. |
[2] | DAS A, DATTA S, GKIOXARI G, et al. Embodied question answering[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1-10. |
[3] |
刘嘉玮, 陈双敏, 王晓丽, 等. 三维打印中喷头的最优路径规划[J]. 图学学报, 2017, 38(1): 34-38.
DOI |
LIU J W, CHEN S M, WANG X L, et al. Optimal nozzle path planning in 3D printing[J]. Journal of Graphics, 2017, 38(1): 34-38 (in Chinese).
DOI |
|
[4] | LIU R, AIGERMAN N, KIM V G, et al. DA Wand: distortion- aware selection using neural mesh parameterization[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16739-16749. |
[5] |
宋琳, 高满屯, 王三民, 等. 融合区域和测地线的活动轮廓模型与图割相结合的自然图像分割[J]. 图学学报, 2015, 36(5): 756-762.
DOI |
SONG L, GAO M T, WANG S M, et al. Combining region-based model with geodesic active contour for nature image segmentation using graph cut optimization[J]. Journal of Graphics, 2015, 36(5): 756-762 (in Chinese). | |
[6] | SETHIAN J A, VLADIMIRSKY A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5699-5703. |
[7] | CRANE K, WEISCHEDEL C, WARDETZKY M. Geodesics in heat: a new approach to computing distance based on heat flow[J]. ACM Transactions on Graphics, 2013, 32(5): 152. |
[8] | MITCHELL J S B, MOUNT D M, PAPADIMITRIOU C H. The discrete geodesic problem[J]. SIAM Journal on Computing, 1987, 16(4): 647-668. |
[9] | CHEN J D, HAN Y J. Shortest paths on a polyhedron[C]// The 6th Annual Symposium on Computational Geometry. New York: ACM, 1990: 360-369. |
[10] | SURAZHSKY V, SURAZHSKY T, KIRSANOV D, et al. Fast exact and approximate geodesics on meshes[J]. ACM Transactions on Graphics, 2005, 24(3): 553-560. |
[11] | XIN S Q, WANG G J. Improving Chen and Han’s algorithm on the discrete geodesic problem[J]. ACM Transactions on Graphics, 2009, 28(4): 104. |
[12] | LIU Y J. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures[J]. Computer-Aided Design, 2013, 45(3): 695-704. |
[13] | XU C X, WANG T Y, LIU Y J, et al. Fast wavefront propagation (FWP) for computing exact geodesic distances on meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(7): 822-834. |
[14] | QIN Y P, HAN X G, YU H C, et al. Fast and exact discrete geodesic computation based on triangle-oriented wavefront propagation[J]. ACM Transactions on Graphics, 2016, 35(4): 125. |
[15] | ALEKSANDROV L, LANTHIER M, MAHESHWARI A, et al. An ε — Approximation algorithm for weighted shortest paths on polyhedral surfaces[C]// The 6th Scandinavian Workshop on Algorithm Theory. Cham: Springer, 1998: 11-22. |
[16] | XIN S Q, YING X, HE Y. Constant-time all-pairs geodesic distance query on triangle meshes[C]// ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2012: 31-38. |
[17] | ADIKUSUMA Y Y, FANG Z, HE Y. Fast construction of discrete geodesic graphs[J]. ACM Transactions on Graphics, 2020, 39(2): 14. |
[18] | YING X, WANG X N, HE Y. Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem[J]. ACM Transactions on Graphics, 2013, 32(6): 170. |
[19] | WANG X N, FANG Z, WU J J, et al. Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces[J]. Computer Aided Geometric Design, 2017, 52-53: 262-284. |
[20] | WEBER O, DEVIR Y S, BRONSTEIN A M, et al. Parallel algorithms for approximation of distance maps on parametric surfaces[J]. ACM Transactions on Graphics, 2008, 27(4): 104. |
[21] | TAO J, ZHANG J Y, DENG B L, et al. Parallel and scalable heat methods for geodesic distance computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 579-594. |
[22] | CAMPEN M, KOBBELT L. Walking on broken mesh: defect-tolerant geodesic distances and parameterizations[J]. Computer Graphics Forum, 2011, 30(2): 623-632. |
[23] | XIN S Q, QUYNH D T P, YING X, et al. A global algorithm to compute defect-tolerant geodesic distance[C]// SIGGRAPH Asia 2012 Technical Briefs. New York: ACM, 2012: 23. |
[24] | FENG N, CRANE K. A heat method for generalized signed distance[J]. ACM Transactions on Graphics, 2024, 43(4): 92. |
[25] | DU J, HE Y, FANG Z, et al. On the vertex-oriented triangle propagation (VTP) algorithm: parallelization and approximation[J]. Computer-Aided Design, 2021, 130: 102943. |
[1] | WANG Wensong, ZHOU Zijun, XIN Shiqing, TU Changhe, WANG Wenping. Tracing high-quality isolines for discrete geodesic distance fields [J]. Journal of Graphics, 2025, 46(2): 437-448. |
[2] | Zhou Min, Zheng Guolei, Chen Shulin. The Solution to Determine the Bounding Rectangle with Maximum Aspect Ratio for 2D Graphics [J]. Journal of Graphics, 2013, 34(4): 46-53. |
[3] | Wang Jiechen, Pu Yingxia, Cui Can, Chen Gang, Ma Jinsong. A parallel algorithm for generating Voronoi diagrams based on point-set adaptive grouping [J]. Journal of Graphics, 2012, 33(6): 7-13. |
[4] | Li Hongjun, Zhang Xiaopeng. Analysis and improvement of smallest enclosing disk algorithm on discrete set of points [J]. Journal of Graphics, 2012, 33(2): 34-38. |
[5] | CHEN Hai, WANG Xin-min, JIAO Yu-song, LI Yan. An Optimal Algorithm for Calculating the Width of Convex Polygons [J]. Journal of Graphics, 2011, 32(2): 5-9. |
[6] | ZHU Er-xi, HE Yuan-jun. A New Algorithm of Polygons’ Boolean Operations Using Interior Angle [J]. Journal of Graphics, 2011, 32(2): 10-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||