Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 230-239.DOI: 10.11996/JG.j.2095-302X.2024010230
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Jiang’an(
), HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian
Received:2023-06-19
Accepted:2023-12-04
Online:2024-02-29
Published:2024-02-29
About author:WANG Jiangan (1981-), associate professor, Ph.D. His main research interests cover computer vision and 3D modeling. E-mail:wangjiangan@126.com
Supported by:CLC Number:
WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian. Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion[J]. Journal of Graphics, 2024, 45(1): 230-239.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010230
| 输入尺寸 | 结构 | 输出尺寸 |
|---|---|---|
| H×W×3 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=2 | H/2×W/2×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=2 | H/4×W/4×32 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×32 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=2 | H/8×W/8×64 |
| H/8×W/8×64 | Conv+GN+LeakyReLU,3×3, stride=1 | H/8×W/8×64 |
| H/8×W/8×64 | Conv+GN+LeakyReLU,3×3, stride=1 | H/8×W/8×64 |
| H/4×W/4×96 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×32 |
| H/2×W/2×48 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H×W×24 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×16 |
Table 1 Multi-scale feature extraction network composition
| 输入尺寸 | 结构 | 输出尺寸 |
|---|---|---|
| H×W×3 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=2 | H/2×W/2×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=2 | H/4×W/4×32 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×32 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=2 | H/8×W/8×64 |
| H/8×W/8×64 | Conv+GN+LeakyReLU,3×3, stride=1 | H/8×W/8×64 |
| H/8×W/8×64 | Conv+GN+LeakyReLU,3×3, stride=1 | H/8×W/8×64 |
| H/4×W/4×96 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×32 |
| H/2×W/2×48 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H×W×24 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×8 |
| H/4×W/4×32 | Conv+GN+LeakyReLU,3×3, stride=1 | H/4×W/4×16 |
| H/2×W/2×16 | Conv+GN+LeakyReLU,3×3, stride=1 | H/2×W/2×16 |
| H×W×8 | Conv+GN+LeakyReLU,3×3, stride=1 | H×W×16 |
Fig. 3 Comparison of different network depth maps of DTU dataset ((a) R-MVSNet; (b) UCSNet; (c) Vis-MVSNet; (d) Cas-MVNet; (e) CVP-MVNet; (f) Ours; (g) Ground truth)
| 方法 | Acc | Comp | Overall |
|---|---|---|---|
| Furu[ | 0.613 | 0.941 | 0.777 |
| Gipuma[ | 0.283 | 0.873 | 0.578 |
| COLMAP[ | 0.400 | 0.664 | 0.532 |
| MVSNet[ | 0.396 | 0.527 | 0.462 |
| R-MVSNet[ | 0.383 | 0.452 | 0.417 |
| D2HC-RMVSNet[ | 0.395 | 0.378 | 0.386 |
| IterMVS[ | 0.373 | 0.354 | 0.363 |
| EPP-MVSNet[ | 0.413 | 0.296 | 0.355 |
| Cas-MVSNet[ | 0.325 | 0.385 | 0.355 |
| PatchmatchNet[ | 0.427 | 0.277 | 0.352 |
| CVP-MVSNet[ | 0.296 | 0.406 | 0.351 |
| MG-MVSNet[ | 0.358 | 0.338 | 0.348 |
| UCSNet[ | 0.338 | 0.349 | 0.344 |
| LANet[ | 0.320 | 0.349 | 0.335 |
| UniMVSNet[ | 0.352 | 0.278 | 0.315 |
| Ours | 0.321 | 0.346 | 0.334 |
Table 2 Comparison of DTU dataset evaluation results/mm
| 方法 | Acc | Comp | Overall |
|---|---|---|---|
| Furu[ | 0.613 | 0.941 | 0.777 |
| Gipuma[ | 0.283 | 0.873 | 0.578 |
| COLMAP[ | 0.400 | 0.664 | 0.532 |
| MVSNet[ | 0.396 | 0.527 | 0.462 |
| R-MVSNet[ | 0.383 | 0.452 | 0.417 |
| D2HC-RMVSNet[ | 0.395 | 0.378 | 0.386 |
| IterMVS[ | 0.373 | 0.354 | 0.363 |
| EPP-MVSNet[ | 0.413 | 0.296 | 0.355 |
| Cas-MVSNet[ | 0.325 | 0.385 | 0.355 |
| PatchmatchNet[ | 0.427 | 0.277 | 0.352 |
| CVP-MVSNet[ | 0.296 | 0.406 | 0.351 |
| MG-MVSNet[ | 0.358 | 0.338 | 0.348 |
| UCSNet[ | 0.338 | 0.349 | 0.344 |
| LANet[ | 0.320 | 0.349 | 0.335 |
| UniMVSNet[ | 0.352 | 0.278 | 0.315 |
| Ours | 0.321 | 0.346 | 0.334 |
| 方法 | 参数量/M | GPU占用/GB | 运行时间/s | Acc/mm | Comp/mm | Overall/mm |
|---|---|---|---|---|---|---|
| Baseline | 0.44 | 7.545 | 2.872 | 0.348 | 0.357 | 0.353 |
| Baseline+FPN | 0.55 | 7.548 | 2.885 | 0.345 | 0.352 | 0.349 |
| Baseline+A2R2CNN | 0.56 | 7.548 | 3.165 | 0.337 | 0.342 | 0.340 |
| Baseline+RU-Net | 0.56 | 8.339 | 2.911 | 0.327 | 0.356 | 0.342 |
| Ours | 0.67 | 8.342 | 3.210 | 0.321 | 0.346 | 0.334 |
Table 3 Network module comparison
| 方法 | 参数量/M | GPU占用/GB | 运行时间/s | Acc/mm | Comp/mm | Overall/mm |
|---|---|---|---|---|---|---|
| Baseline | 0.44 | 7.545 | 2.872 | 0.348 | 0.357 | 0.353 |
| Baseline+FPN | 0.55 | 7.548 | 2.885 | 0.345 | 0.352 | 0.349 |
| Baseline+A2R2CNN | 0.56 | 7.548 | 3.165 | 0.337 | 0.342 | 0.340 |
| Baseline+RU-Net | 0.56 | 8.339 | 2.911 | 0.327 | 0.356 | 0.342 |
| Ours | 0.67 | 8.342 | 3.210 | 0.321 | 0.346 | 0.334 |
| 方法 | 输入分辨率 | 输出分辨率 | GPU/GB | 运行时间/s | Acc/mm | Comp/mm |
|---|---|---|---|---|---|---|
| R-MVSNet | 1536×1152 | 384×288 | 9.800 | 2.518 | 0.383 | 0.452 |
| Vis-MVSNet | 1536×1152 | 768×576 | 5.583 | 3.902 | 0.369 | 0.361 |
| CVP-MVSNet | 1536×1152 | 1536×1152 | 8.335 | 3.118 | 0.296 | 0.406 |
| UniMVSNet | 1536×1152 | 1536×1152 | 9.991 | 1.466 | 0.352 | 0.278 |
| Ours | 1536×1152 | 1536×1152 | 8.342 | 3.210 | 0.321 | 0.346 |
| Ours | 1536×1152 | 768×576 | 4.043 | 0.862 | 0.367 | 0.381 |
Table 4 Network performance comparison
| 方法 | 输入分辨率 | 输出分辨率 | GPU/GB | 运行时间/s | Acc/mm | Comp/mm |
|---|---|---|---|---|---|---|
| R-MVSNet | 1536×1152 | 384×288 | 9.800 | 2.518 | 0.383 | 0.452 |
| Vis-MVSNet | 1536×1152 | 768×576 | 5.583 | 3.902 | 0.369 | 0.361 |
| CVP-MVSNet | 1536×1152 | 1536×1152 | 8.335 | 3.118 | 0.296 | 0.406 |
| UniMVSNet | 1536×1152 | 1536×1152 | 9.991 | 1.466 | 0.352 | 0.278 |
| Ours | 1536×1152 | 1536×1152 | 8.342 | 3.210 | 0.321 | 0.346 |
| Ours | 1536×1152 | 768×576 | 4.043 | 0.862 | 0.367 | 0.381 |
| [1] |
AANAES H, JENSEN R R, VOGIATZIS G, et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 2016, 120(2): 153-168.
DOI URL |
| [2] |
FURUKAWA Y, HERNÁNDEZ C. Multi-view stereo: a tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2015, 9(1-2): 1-148.
DOI URL |
| [3] | 王思启, 张家强, 李丽圆, 等. MVSNet在空间目标三维重建中的应用[J]. 中国激光, 2022, 49(23): 176-185. |
| WANG S Q, ZHANG J Q, LI L Y, et al. Application of MVSNet in 3D reconstruction of space objects[J]. Chinese Journal of Lasers, 2022, 49(23): 176-185 (in Chinese). | |
| [4] | SCHÖNBERGER J L, FRAHM J M. Structure-from-motion revisited[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 4104-4113. |
| [5] | KANG S B, SZELISKI R, CHAI J X. Handling occlusions in dense multi-view stereo[C]// The 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR. New York: IEEE Press, 2003:I: 103-I:110.. |
| [6] | SCHÖNBERGER J L, ZHENG E L, FRAHM J M, et al. Pixelwise view selection for unstructured multi-view stereo[C]// European Conference on Computer Vision. Cham: Springer, 2016: 501-518. |
| [7] | 刘万军, 王俊恺, 曲海成. 多尺度代价体信息共享的多视角立体重建网络[J]. 中国图象图形学报, 2022, 27(11): 3331-3342. |
| LIU W J, WANG J K, QU H C. Multi-scale cost volumes information sharing based multi-view stereo reconstructed model[J]. Journal of Image and Graphics, 2022, 27(11): 3331-3342 (in Chinese). | |
| [8] | 王江安, 庞大为, 黄乐, 等. 基于多尺度特征递归卷积的稠密点云重建网络[J]. 图学学报, 2022, 43(5): 875-883. |
| WANG J A, PANG D W, HUANG L, et al. Dense point cloud reconstruction network using multi-scale feature recursive convolution[J]. Journal of Graphics, 2022, 43(5): 875-883 (in Chinese). | |
| [9] | NIRKIN Y, WOLF L, HASSNER T. HyperSeg: patch-wise hypernetwork for real-time semantic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4060-4069. |
| [10] | 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J/OL]. 航空学报, 2023: 1-33. [2023-06-12]. https://kns.cnki.net/kcms/detail/11.1929.V.20230609.1350.008.html. |
| LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J/OL]. Acta Aeronautica et Astronautica Sinica, 2023: 1-33. [2023-06-12]. https://kns.cnki.net/kcms/detail/11.1929.V.20230609.1350.008.html. (in Chinese). | |
| [11] | 王艺娴, 胡雨凡, 孔庆群, 等. 三维点云语义分割:现状与挑战[J]. 工程科学学报, 2023, 45(10): 1653-1665. |
| WANG Y X, HU Y F, KONG Q Q, et al. 3D point cloud semantic segmentation: state of the art and challenges[J]. Chinese Journal of Engineering, 2023, 45(10): 1653-1665 (in Chinese). | |
| [12] |
HAMID M S, MANAP N A, HAMZAH R A, et al. Stereo matching algorithm based on deep learning: a survey[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(5): 1663-1673.
DOI URL |
| [13] | 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报: 自然科学版, 2018, 58(4): 438-444. |
| ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University: Science and Technology, 2018, 58(4): 438-444 (in Chinese). | |
| [14] | KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 36(4): 78:1-78:13. |
| [15] | ZHU Q T, MIN C, WEI Z Z, et al. Deep learning for multi-view stereo via plane sweep: a survey[EB/OL]. [2023-06-22]. http://arxiv.org/abs/2106.15328v2. |
| [16] | 许允波, 张建兵, 谭宁生. 基于平面扫描的线状缓冲区生成的改进算法[J]. 计算机应用研究, 2012, 29(11): 4364-4366, 4389. |
| XU Y B, ZHANG J B, TAN N S. Improved algorithm for line buffering based on plane sweep technique[J]. Application Research of Computers, 2012, 29(11): 4364-4366, 4389 (in Chinese). | |
| [17] | YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo[C]// European Conference on Computer Vision. Cham: Springer, 2018: 785-801. |
| [18] | YAO Y, LUO Z X, LI S W, et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5520-5529. |
| [19] | YU Z H, GAO S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1946-1955. |
| [20] | 汤建龙, 解佳龙, 薛成均. 利用高斯牛顿迭代的时频差无源定位算法[J]. 西安电子科技大学学报, 2023, 50(1): 19-28, 47. |
| TANG J L, XIE J L, XUE C J. TDOA-FDOA passive location algorithm using gauss-newton iteration[J]. Journal of Xidian University, 2023, 50(1): 19-28, 47 (in Chinese). | |
| [21] | ZHANG J Y, YAO Y, LI S W, et al. Visibility-aware multi-view stereo network[EB/OL]. [2023-06-22]. https://arxiv.org/abs/2008.07928.pdf. |
| [22] | YAN J F, WEI Z Z, YI H W, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking[C]// European Conference on Computer Vision. Cham: Springer, 2020: 674-689. |
| [23] | WEI Z Z, ZHU Q T, MIN C, et al. AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 6167-6176. |
| [24] | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting[C]// The 28th International Conference on Neural Information Processing Systems - Volume 1. New York:ACM, 2015: 802-810. |
| [25] | GU X D, FAN Z W, ZHU S Y, et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2492-2501. |
| [26] | YANG J Y, MAO W, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 4876-4885. |
| [27] | ZHANG X D, HU Y T, WANG H C, et al. Long-range attention network for multi-view stereo[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3781-3790. |
| [28] | WANG F, GALLIANI S, VOGEL C, et al. PatchmatchNet: learned multi-view patchmatch stereo[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14189-14198. |
| [29] | MA X J, GONG Y, WANG Q R, et al. EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5712-5720. |
| [30] | WANG F, GALLIANI S, VOGEL C, et al. IterMVS: iterative probability estimation for efficient multi-view stereo[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8596-8605. |
| [31] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2023-06-22]. https://arxiv.org/abs/1406.1078.pdf |
| [32] | PENG R, WANG R J, WANG Z Y, et al. Rethinking depth estimation for multi-view stereo: a unified representation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8635-8644. |
| [33] | XI J H, SHI Y F, WANG Y J, et al. RayMVSNet: learning ray-based 1D implicit fields for accurate multi-view stereo[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8585-8595. |
| [34] | DING Y K, YUAN W T, ZHU Q T, et al. TransMVSNet: global context-aware multi-view stereo network with transformers[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8575-8584. |
| [35] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
| [36] | MI Z X, DI C, XU D. Generalized binary search network for highly-efficient multi-view stereo[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12981-12990. |
| [37] | YAMASHITA K, ENYO Y, NOBUHARA S, et al. nLMVS-net: deep non-lambertian multi-view stereo[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 3036-3045. |
| [38] | CHIU C Y, WU Y T, SHEN I C, et al. 360MVSNet: deep multi-view stereo network with 360° images for indoor scene reconstruction[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 3056-3065. |
| [39] |
ZHANG X D, YANG F Z, CHANG M, et al. MG-MVSNet: multiple granularities feature fusion network for multi-view stereo[J]. Neurocomputing, 2023, 528: 35-47.
DOI URL |
| [40] | ZHANGL Y, ZHU J K, LIN L X. Multi-view stereo representation revist: region-aware MVSNet[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 17376-17385. |
| [41] | QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10208-10219. |
| [42] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2261-2269. |
| [43] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
| [44] | 鄢化彪, 徐方奇, 黄绿娥, 等. 基于深度学习的多视图立体重建方法综述[J]. 光学精密工程, 2023, 31(16): 2444-2464. |
|
YAN H B, XU F Q, HUANG L E, et al. Review of multi-view stereo reconstruction methods based on deep learning[J]. Optics and Precision Engineering, 2023, 31(16): 2444-2464 (in Chinese).
DOI URL |
|
| [45] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. |
| [46] | 杨航, 陈瑞, 安仕鹏, 等. 深度学习背景下的图像三维重建技术进展综述[J]. 中国图象图形学报, 2023, 28(8): 2396-2409. |
|
YANG H, CHEN R, AN S P, et al. The growth of image-related three dimensional reconstruction techniques in deep learning-driven era: a critical summary[J]. Journal of Image and Graphics, 2023, 28(8): 2396-2409 (in Chinese).
DOI URL |
|
| [47] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// The 32nd International Conference on International Conference on Machine Learning - Volume 37. New York:ACM, 2015: 448-456. |
| [48] | Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]// Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323. |
| [49] | WU Y X, HE K M. Group normalization[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
| [50] | XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. [2023-06-22]. https://arxiv.org/abs/1505.00853.pdf |
| [51] |
许彪, 董友强, 张力, 等. 分区优化混合SfM方法[J]. 测绘学报, 2022, 51(1): 115-126.
DOI |
|
XU B, DONG Y Q, ZHANG L, et al. A hybrid SfM method based on partition optimization[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 115-126 (in Chinese).
DOI |
|
| [52] | 袁艺天, 林春雨, 赵耀, 等. 基于边缘校正的深度图像上采样后处理算法[J]. 铁道学报, 2015, 37(12): 67-73. |
| YUAN Y T, LIN C Y, ZHAO Y, et al. A post processing algorithm for upsampling depth image based on boundary correction[J]. Journal of the China Railway Society, 2015, 37(12): 67-73 (in Chinese). | |
| [53] | YAO Y, LUO Z X, LI S W, et al. BlendedMVS: a large-scale dataset for generalized multi-view stereo networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1787-1796. |
| [54] | GALLIANI S, LASINGER K, SCHINDLER K. Massively parallel multiview stereopsis by surface normal diffusion[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 873-881. |
| [55] |
FURUKAWA Y, PONCE J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376.
DOI PMID |
| [56] | CHENG S, XU Z X, ZHU S L, et al. Deep stereo using adaptive thin volume representation with uncertainty awareness[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2521-2531. |
| [1] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
| [2] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
| [3] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
| [4] | ZHU Guanghui, MIAO Jun, HU Hongli, SHEN Ji, DU Ronghua. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism [J]. Journal of Graphics, 2024, 45(3): 464-471. |
| [5] | WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei. A review on neural radiance fields acceleration [J]. Journal of Graphics, 2024, 45(1): 1-13. |
| [6] | HUANG Jiahui, MU Taijiang. A survey of dynamic 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 14-25. |
| [7] | WANG Xinyu, LIU Hui, ZHU Jicheng, SHENG Yurui, ZHANG Caiming. Deep multimodal medical image fusion network based on high-low frequency feature decomposition [J]. Journal of Graphics, 2024, 45(1): 65-77. |
| [8] | LI Jiaqi, WANG Hui, GUO Yu. Classification and segmentation network based on Transformer for triangular mesh [J]. Journal of Graphics, 2024, 45(1): 78-89. |
| [9] | SHI Min, WANG Bingqi, LI Zhaoxin, ZHU Dengming. A seamless texture mapping method with highlight processing [J]. Journal of Graphics, 2024, 45(1): 148-158. |
| [10] | ZHOU Jingyi, ZHANG Qitong, FENG Jieqing. Hybrid-structure based multi-view 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 199-208. |
| [11] | HAN Yazhen, YIN Mengxiao, MA Weizhao, YANG Shigeng, HU Jinfei, ZHU Congyang. DGOA: point cloud upsampling based on dynamic graph and offset attention [J]. Journal of Graphics, 2024, 45(1): 219-229. |
| [12] | CHENG Huan, WANG Shuo, LI Meng, QIN Lun-ming, ZHAO Fang. A review of neural radiance field for autonomous driving scene [J]. Journal of Graphics, 2023, 44(6): 1091-1103. |
| [13] | LI Hong-xuan, ZHANG Song-yang, REN Bo. High-capacity clipped robust image steganography based on multilevel invertible neural networks [J]. Journal of Graphics, 2023, 44(6): 1149-1161. |
| [14] | ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin. Point cloud classification model incorporating external attention and graph convolution [J]. Journal of Graphics, 2023, 44(6): 1162-1172. |
| [15] | WANG Ji, WANG Sen, JIANG Zhi-wen, XIE Zhi-feng, LI Meng-tian. Zero-shot text-driven avatar generation based on depth-conditioned diffusion model [J]. Journal of Graphics, 2023, 44(6): 1218-1226. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||