Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1162-1172.DOI: 10.11996/JG.j.2095-302X.202306116
Previous Articles Next Articles
ZHOU Rui-chuang(), TIAN Jin(
), YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin
Received:
2023-06-15
Accepted:
2023-09-20
Online:
2023-12-31
Published:
2023-12-17
Contact:
TIAN Jin (1982-), associate professor, Ph.D. Her main research interests cover large-scale numerical computing, computer electromagnetics and machine learning. E-mail:About author:
ZHOU Rui-chuang (1997-), master student. His main research interests cover computer graphics and deep learning.
E-mail:m18916835630@163.com
Supported by:
CLC Number:
ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin. Point cloud classification model incorporating external attention and graph convolution[J]. Journal of Graphics, 2023, 44(6): 1162-1172.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.202306116
设备配置 | 型号及参数 |
---|---|
Operation system | Linux Ubuntu18.04 |
CPU | Intel Core i5-12400F |
RAM | 16 G |
GPU | RTX 3090 |
CUDA | 10.1 |
Python | 3.7 |
Pytorch | 1.6 |
Table 1 Experimental configuration
设备配置 | 型号及参数 |
---|---|
Operation system | Linux Ubuntu18.04 |
CPU | Intel Core i5-12400F |
RAM | 16 G |
GPU | RTX 3090 |
CUDA | 10.1 |
Python | 3.7 |
Pytorch | 1.6 |
Method | Input | Aoacc (%) | Amacc (%) |
---|---|---|---|
MVCNN | View | 90.1 | - |
VoxNet | Voxels | 85.5 | 82.8 |
PointNet | Points | 90.0 | 84.3 |
PointNet++ | Points | 91.7 | - |
PointASNL[ | Points Points+Normal | 92.8 93.2 | - - |
PointConv[ | Points | 92.4 | - |
PCT | Points | 93.2 | - |
SpiderCNN[ | Points+Normal | 92.4 | - |
PointCNN[ | Point | 92.2 | 88.1 |
DGCNN | Point | 92.6 | 89.8 |
Point Transformer | Point | 92.8 | - |
LFT-Net[ | Points+Normal | 93.2 | 89.7 |
DTNet[ | Point | 92.9 | 90.4 |
Ours | Point | 93.8 | 90.7 |
Table 2 Classification accuracy of different models on the ModelNet40 dataset
Method | Input | Aoacc (%) | Amacc (%) |
---|---|---|---|
MVCNN | View | 90.1 | - |
VoxNet | Voxels | 85.5 | 82.8 |
PointNet | Points | 90.0 | 84.3 |
PointNet++ | Points | 91.7 | - |
PointASNL[ | Points Points+Normal | 92.8 93.2 | - - |
PointConv[ | Points | 92.4 | - |
PCT | Points | 93.2 | - |
SpiderCNN[ | Points+Normal | 92.4 | - |
PointCNN[ | Point | 92.2 | 88.1 |
DGCNN | Point | 92.6 | 89.8 |
Point Transformer | Point | 92.8 | - |
LFT-Net[ | Points+Normal | 93.2 | 89.7 |
DTNet[ | Point | 92.9 | 90.4 |
Ours | Point | 93.8 | 90.7 |
Method | Input | Aoacc (%) | Amacc (%) |
---|---|---|---|
PointNet | Points | 68.2 | 63.4 |
PointNet++ | Points | 77.9 | 75.4 |
DGCNN | Point | 78.1 | 73.6 |
PointCNN | Points | 78.5 | 75.1 |
DRNet[ | Points | 80.3 | 78.0 |
Ours | Point | 82.8 | 80.4 |
Table 3 Classification accuracy of different models on the ScanObjectNN dataset
Method | Input | Aoacc (%) | Amacc (%) |
---|---|---|---|
PointNet | Points | 68.2 | 63.4 |
PointNet++ | Points | 77.9 | 75.4 |
DGCNN | Point | 78.1 | 73.6 |
PointCNN | Points | 78.5 | 75.1 |
DRNet[ | Points | 80.3 | 78.0 |
Ours | Point | 82.8 | 80.4 |
Method | GraphConv | Residual | External Attention | HSRN | Aoacc (%) | Amacc (%) |
---|---|---|---|---|---|---|
A | √ | × | × | × | 92.6 | 88.6 |
B | √ | √ | × | × | 92.8 | 89.8 |
C | √ | √ | √ | × | 93.3 | 90.2 |
D | √ | √ | √ | √ | 93.8 | 90.7 |
Table 4 Ablation studies about different modules
Method | GraphConv | Residual | External Attention | HSRN | Aoacc (%) | Amacc (%) |
---|---|---|---|---|---|---|
A | √ | × | × | × | 92.6 | 88.6 |
B | √ | √ | × | × | 92.8 | 89.8 |
C | √ | √ | √ | × | 93.3 | 90.2 |
D | √ | √ | √ | √ | 93.8 | 90.7 |
Layer | Aoacc | Amacc |
---|---|---|
1 | 92.8 | 89.8 |
2 | 93.8 | 90.7 |
3 | 93.6 | 90.2 |
Table 5 Experiments with different convolutional layers (%)
Layer | Aoacc | Amacc |
---|---|---|
1 | 92.8 | 89.8 |
2 | 93.8 | 90.7 |
3 | 93.6 | 90.2 |
K | Aoacc | Amacc |
---|---|---|
10 | 92.6 | 87.8 |
15 | 92.9 | 89.7 |
20 | 93.8 | 90.7 |
25 | 93.2 | 89.8 |
30 | 92.8 | 89.3 |
Table 6 K value experiment (%)
K | Aoacc | Amacc |
---|---|---|
10 | 92.6 | 87.8 |
15 | 92.9 | 89.7 |
20 | 93.8 | 90.7 |
25 | 93.2 | 89.8 |
30 | 92.8 | 89.3 |
Fig. 11 Visualizing sparse point clouds ((a) Original point cloud; (b) Reduce sampling points by 25%; (c) Reduce sampling points by 50%; (d) Reduce sampling points by 75%)
[1] | LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61. |
[2] | XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light, Science & Applications, 2021, 10(1): 216. |
[3] | WANG J Y, CHEN J L, SUN Y C, et al. RobOT: robustness-oriented testing for deep learning systems[C]// 2021 IEEE/ACM 43rd International Conference on Software Engineering. New York: IEEE Press, 2021: 300-311. |
[4] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
DOI URL |
[5] | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 945-953. |
[6] | MATURANA D, SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2015: 922-928. |
[7] | CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 652-660. |
[8] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114. |
[9] | WANG Y E, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
[10] | ZHANG K G, HAO M, WANG J, et al. Linked dynamic graph cnn: learning on point cloud via linking hierarchical features[EB/OL]. [2023-02-06]. https://arxiv.org/abs/1904.10014. |
[11] | 李维刚, 陈婷, 田志强. 基于孪生自适应图卷积算法的点云分类与分割[EB/OL]. 计算机应用. [2023-02-24]. https://kns.cnki.net/kcms/detail//51.1307.TP.20230223.1405.010.html. |
LI W G, CHEN T, TIAN Z Q. Point cloud classification and segmentation based on twin adaptive graph convolution algorithm[EB/OL]. Journal of Computer Applications: [2023-02-24]. https://kns.cnki.net/kcms/detail//51.1307.TP.20230223.1405.010.html (in Chinese). | |
[12] | 刘斌, 樊云超. 基于改进动态图卷积的点云分类模型[J]. 中国科技论文, 2022, 17(11): 1230-1235, 1266. |
LIU B, FAN Y C. A point cloud classification model based on improved dynamic graph convolution[J]. China Sciencepaper, 2022, 17(11): 1230-1235, 1266 (in Chinese). | |
[13] |
梁奥, 李峙含, 花海洋. PointMLP-FD: 基于多级自适应下采样的点云分类模型[J]. 图学学报, 2023, 44(1): 112-119.
DOI |
LIANG A, LI Z H, HUA H Y. PointMLP-FD: a point cloud classification model based on multi-level adaptive downsampling[J]. Journal of Graphics, 2023, 44(1): 112-119 (in Chinese).
DOI |
|
[14] |
GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
DOI |
[15] | ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 16259-16268. |
[16] | 梁振华, 王丰. 面向部件分割的PointNet注意力加权特征聚合网络[J] .计算机应用研究, 2023, 40(05): 1571-1576, 1582. |
LIANG Z H, WANG F. A PointNet attention-weighted feature aggregation network for part segmentation[J]. Application Research of Computers, 2023, 40(05): 1571-1576, 1582 (in Chinese). | |
[17] | 刘玉珍, 李楠, 陶志勇. 基于环查询和通道注意力的点云分类与分割[J]. 图学学报, 2022, 43(4): 616-623. |
LIU Y Z, LI N, TAO Z Y. Point cloud classification and segmentation based on ring query and channel attention[J]. Journal of Graphics, 2022, 43(4): 616-623 (in Chinese). | |
[18] | GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: external attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5436-5447. |
[19] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-02-13]. https://arxiv.org/abs/1609.02907.pdf. |
[20] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
[21] | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7794-7803. |
[22] | 沈露, 杨家志, 周国清, 等. 集自注意力与边卷积的点云分类分割模型[J/OL]. 计算机工程与应用. [2023-02-24]. https://kns.cnki.net/kcms/detail/11.2127.TP.20221019.1414.006.html. |
SHEN L, YANG J Z, ZHOU G Q, et al. A point cloud classification segmentation model with integrated self-attentive and edge convolution[J/OL]. Computer Engineering and Applications. [2023-02-24]. tps://kns.cnki.net/kcms/detail/11.2127.TP.20221019.1414.006.html (in Chinese). | |
[23] | CHAMBERLAIN B P, CLOUGH J, DEISENROTH M P. Neural embeddings of graphs in hyperbolic space[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1705.10359.pdf. |
[24] | TIFREA A, BÉCIGNEUL G, GANEA O E. Poincar\'e GloVe: hyperbolic word embeddings[EB/OL]. [2023-02-12]. https://arxiv.org/abs/1810.06546.pdf. |
[25] |
CHAMI I, YING R, RÉ C, et al. Hyperbolic graph convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2019, 32: 4869-4880.
PMID |
[26] | KHRULKOV V, MIRVAKHABOVA L, USTINOVA E, et al. Hyperbolic image embeddings[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6418-6428. |
[27] | BOTTOU L. Stochastic gradient descent tricks[M]// Neural Networks:Tricks of the Trade. Heidelberg: Springer, 2012: 421-436. |
[28] | LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[EB/OL]. [2023-02-13]. https://arxiv.org/abs/1608.03983.pdf. |
[29] | UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1588-1597. |
[30] | YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 5589-5598. |
[31] | WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9621-9630. |
[32] | XU Y F, FAN T Q, XU M Y, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]// European Conference on Computer Vision. Cham: Springer, 2018: 90-105. |
[33] | LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on Χ -transformed points[EB/OL]. [2023-02-13]. https://arxiv.org/abs/1801.07791.pdf. |
[34] | GAO Y B, LIU X B, LI J, et al. LFT-net: local feature transformer network for point clouds analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 2158-2168. |
[35] | HAN X F, JIN Y F, CHENG H X, et al. Dual transformer for point cloud analysis[EB/OL]. [2023-02-13]. https://ieeexplore.ieee.org/document/9855233. |
[36] | QIU S, ANWAR S, BARNES N. Dense-resolution network for point cloud classification and segmentation[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3813-3822. |
[1] |
WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei.
A review on neural radiance fields acceleration
[J]. Journal of Graphics, 2024, 45(1): 1-13.
|
[2] |
GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua.
Human action recognition algorithm based on semantics guided neural networks
[J]. Journal of Graphics, 2024, 45(1): 26-34.
|
[3] |
WANG Xinyu, LIU Hui, ZHU Jicheng, SHENG Yurui, ZHANG Caiming.
Deep multimodal medical image fusion network based on high-low frequency feature decomposition
[J]. Journal of Graphics, 2024, 45(1): 65-77.
|
[4] |
LI Jiaqi, WANG Hui, GUO Yu.
Classification and segmentation network based on Transformer for triangular mesh
[J]. Journal of Graphics, 2024, 45(1): 78-89.
|
[5] |
HAN Yazhen, YIN Mengxiao, MA Weizhao, YANG Shigeng, HU Jinfei, ZHU Congyang.
DGOA: point cloud upsampling based on dynamic graph and offset attention
[J]. Journal of Graphics, 2024, 45(1): 219-229.
|
[6] |
WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian.
Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion
[J]. Journal of Graphics, 2024, 45(1): 230-239.
|
[7] | WANG Ji, WANG Sen, JIANG Zhi-wen, XIE Zhi-feng, LI Meng-tian. Zero-shot text-driven avatar generation based on depth-conditioned diffusion model [J]. Journal of Graphics, 2023, 44(6): 1218-1226. |
[8] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[9] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. |
[10] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. |
[11] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. |
[12] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[13] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. |
[14] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. |
[15] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||