Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 892-900.DOI: 10.11996/JG.j.2095-302X.2024050892
• Image Processing and Computer Vision • Previous Articles Next Articles
HU Fengkuo1(), YE Lan1(
), TAN Xianfeng2, ZHANG Qinzhan3, HU Zhixin1, FANG Qing1, WANG Lei2, MAN Xiaofeng3
Received:
2024-05-01
Revised:
2024-07-10
Online:
2024-10-31
Published:
2024-10-31
Contact:
YE Lan
About author:
First author contact:HU Fengkuo (2000-), master student. His main research interests cover computer vision and target detection. E-mail:1754494774@qq.com
Supported by:
CLC Number:
HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection[J]. Journal of Graphics, 2024, 45(5): 892-900.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024050892
名称 | 参数 |
---|---|
操作系统 | Windows 10 |
CPU | 13th Gen Intel(R) Core(TM) i5-13400F |
显卡 | Nvidia RTX3060 |
显存 | 12 GB |
编程语言 | Python3.8 |
深度学习框架 | Pytorch 1.12.1+CUDA 11.3.1 |
优化函数 | SGD |
训练轮数 | 300 |
初始学习率 | 0.01 |
批量 | 16 |
Table 1 Experimental environment and parameter configuration
名称 | 参数 |
---|---|
操作系统 | Windows 10 |
CPU | 13th Gen Intel(R) Core(TM) i5-13400F |
显卡 | Nvidia RTX3060 |
显存 | 12 GB |
编程语言 | Python3.8 |
深度学习框架 | Pytorch 1.12.1+CUDA 11.3.1 |
优化函数 | SGD |
训练轮数 | 300 |
初始学习率 | 0.01 |
批量 | 16 |
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
YOLOv8n+BLRA | 56.7 | 28.5 | 57.6 | 8.3 | 3.42 |
YOLOv8n+TA | 57.2 | 28.6 | 57.9 | 8.2 | 3.2 |
YOLOv8n+CA | 57.4 | 28.9 | 58.3 | 8.1 | 3.0 |
YOLOv8n+SimAM | 57.5 | 29.1 | 58.4 | 8.1 | 3.0 |
Table 2 Comparative results of different attention mechanisms
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
YOLOv8n+BLRA | 56.7 | 28.5 | 57.6 | 8.3 | 3.42 |
YOLOv8n+TA | 57.2 | 28.6 | 57.9 | 8.2 | 3.2 |
YOLOv8n+CA | 57.4 | 28.9 | 58.3 | 8.1 | 3.0 |
YOLOv8n+SimAM | 57.5 | 29.1 | 58.4 | 8.1 | 3.0 |
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
v8n+RepConv | 57.3 | 29.6 | 58.1 | 8.5 | 3.1 |
v8n+EMSConv | 56.6 | 29.2 | 57.3 | 6.0 | 2.6 |
v8n+SCConv | 56.8 | 29.3 | 57.6 | 5.8 | 2.6 |
Table 3 Comparison results of detection of different convolutional modules in the detection header
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
v8n+RepConv | 57.3 | 29.6 | 58.1 | 8.5 | 3.1 |
v8n+EMSConv | 56.6 | 29.2 | 57.3 | 6.0 | 2.6 |
v8n+SCConv | 56.8 | 29.3 | 57.6 | 5.8 | 2.6 |
Fig. 7 Original YOLOv8n detection results ((a) Before adding GhostNetv2+SimAM module; (b) Before using the BiFPN; (c) Before using the PSS detection head; (d) None of the four modules had been improved)
Fig. 8 Detection results of the YOLOv8n-GSBP algorithm proposed in this paper ((a) After adding GhostNetv2+SimAM module; (b) After using the BiFPN; (c) After using the PSS detection head; (d) Four modules are improved)
Algorithms | GhostNetv2+SimAM | BiFPN | PSS | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M | FPS |
---|---|---|---|---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 | 152.9 | |||
YOLOv8n-GS | √ | 57.5 | 29.1 | 58.3 | 6.8 | 2.6 | 147.4 | ||
YOLOv8n-B | √ | 57.1 | 29.9 | 57.9 | 7.1 | 2.0 | 132.8 | ||
YOLOv8n-P | √ | 56.8 | 29.3 | 57.6 | 5.8 | 2.6 | 145.0 | ||
YOLOv8n-GSB | √ | √ | 57.5 | 29.4 | 58.2 | 5.8 | 1.6 | 123.5 | |
YOLOv8n-GSP | √ | √ | 57.2 | 29.1 | 58.1 | 4.5 | 2.2 | 134.7 | |
YOLOv8n-BP | √ | √ | 56.9 | 29.4 | 57.7 | 4.8 | 1.6 | 122.1 | |
YOLOv8n-GSBP | √ | √ | √ | 57.3 | 29.5 | 58.1 | 3.6 | 1.1 | 110.0 |
Table 4 Comparative results of ablation experiments
Algorithms | GhostNetv2+SimAM | BiFPN | PSS | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M | FPS |
---|---|---|---|---|---|---|---|---|---|
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 | 152.9 | |||
YOLOv8n-GS | √ | 57.5 | 29.1 | 58.3 | 6.8 | 2.6 | 147.4 | ||
YOLOv8n-B | √ | 57.1 | 29.9 | 57.9 | 7.1 | 2.0 | 132.8 | ||
YOLOv8n-P | √ | 56.8 | 29.3 | 57.6 | 5.8 | 2.6 | 145.0 | ||
YOLOv8n-GSB | √ | √ | 57.5 | 29.4 | 58.2 | 5.8 | 1.6 | 123.5 | |
YOLOv8n-GSP | √ | √ | 57.2 | 29.1 | 58.1 | 4.5 | 2.2 | 134.7 | |
YOLOv8n-BP | √ | √ | 56.9 | 29.4 | 57.7 | 4.8 | 1.6 | 122.1 | |
YOLOv8n-GSBP | √ | √ | √ | 57.3 | 29.5 | 58.1 | 3.6 | 1.1 | 110.0 |
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
FasterR-CNN | 51.2 | 22.5 | 49.4 | 370.2 | 137.1 |
Detr | 54.3 | 30.4 | 55.0 | 101.0 | 31.2 |
YOLOv5n | 54.1 | 28.7 | 54.8 | 7.1 | 2.5 |
YOLOv6n | 55.1 | 27.1 | 56.0 | 11.2 | 4.2 |
YOLOv7n-tiny | 56.5 | 25.7 | 57.1 | 13.0 | 6.9 |
Damo-YOLO | 56.9 | 27.6 | 57.6 | 6.2 | 5.5 |
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
YOLOv10n | 55.5 | 28.9 | 56.3 | 8.2 | 2.7 |
YOLOv8n-GSBP | 57.3 | 29.5 | 58.1 | 3.6 | 1.1 |
Table 5 Comparison results of different algorithms
Algorithms | mAP50/% | mAP50:90/% | F1 | GFLOPs/G | Params/M |
---|---|---|---|---|---|
FasterR-CNN | 51.2 | 22.5 | 49.4 | 370.2 | 137.1 |
Detr | 54.3 | 30.4 | 55.0 | 101.0 | 31.2 |
YOLOv5n | 54.1 | 28.7 | 54.8 | 7.1 | 2.5 |
YOLOv6n | 55.1 | 27.1 | 56.0 | 11.2 | 4.2 |
YOLOv7n-tiny | 56.5 | 25.7 | 57.1 | 13.0 | 6.9 |
Damo-YOLO | 56.9 | 27.6 | 57.6 | 6.2 | 5.5 |
YOLOv8n | 57.0 | 29.4 | 57.8 | 8.1 | 3.0 |
YOLOv10n | 55.5 | 28.9 | 56.3 | 8.2 | 2.7 |
YOLOv8n-GSBP | 57.3 | 29.5 | 58.1 | 3.6 | 1.1 |
[1] | 宋平丽. 基于视频图像的桥梁裂缝检测[D]. 武汉: 武汉理工大学, 2010. |
SONG P L. Crack detection of bridge on video image[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). | |
[2] | 周林. 基于图像处理的路面裂缝检测系统设计与研究[D]. 太原: 太原理工大学, 2013. |
ZHOU L. Research and design of pavement crack detection system based on image processing[D]. Taiyuan: Taiyuan University of Technology, 2013 (in Chinese). | |
[3] | 孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报: 自然科学版, 2020, 48(2): 84-93. |
SUN Z Y, PEI L L, LI W, et al. Pavement sealed crack detection method based on improved faster R-CNN[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48(2): 84-93 (in Chinese). | |
[4] | 刘凡, 王君锋, 陈峙宇, 等. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. |
LIU F, WANG J F, CHEN Z Y, et al. Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726 (in Chinese). | |
[5] | 张政超. 改进YOLOv5的轻量级带钢表面缺陷检测[J]. 计算机系统应用, 2023, 32(6): 278-285. |
ZHANG Z C. Lightweight strip steel defect detection based on improved YOLOv5[J]. Computer Systems & Applications, 2023, 32(6): 278-285 (in Chinese). | |
[6] | 蒋博, 万毅, 谢显中. 改进YOLOv5s的轻量化钢材表面缺陷检测模型[J]. 计算机科学, 2023, 50(S2): 230900113. |
JIANG B, WAN Y, XIE X Z. Improved YOLOv5s lightweight steel surface defect detection model[J]. Computer Science, 2023, 50(S2): 230900113 (in Chinese). | |
[7] | 贾玉进, 张振程, 李浠铭, 等. 基于轻量化YOLOv5网络的输电线路绝缘子缺陷检测[J]. 电力学报, 2024, 39(1): 36-44. |
JIA Y J, ZHANG Z C, LI X M, et al. Defect detection of insulator on transmission line based on lightweight YOLOv5 network[J]. Journal of Electric Power, 2024, 39(1): 36-44 (in Chinese). | |
[8] | HOWARD A G, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 1314-1324. |
[9] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6848-6856. |
[10] | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1577-1586. |
[11] | 马燕婷, 赵红东, 阎超, 等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157. |
MA Y T, ZHAO H D, YAN C, et al. Strip steel surface defect detection method by improved YOLOv5 network[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(8): 150-157 (in Chinese). | |
[12] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
[13] |
耿焕同, 刘振宇, 蒋骏, 等. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 计算机应用, 2024, 44(5): 1613-1618.
DOI |
GENG H T, LIU Z Y, JIANG J, et al. Embedded road crack detection algorithm based on improved YOLOv8[J]. Journal of Computer Applications, 2024, 44(5): 1613-1618 (in Chinese).
DOI |
|
[14] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
[15] | YANG L X, ZHANG R Y, LI L D, et al. SimAM:a simple, parameter-free attention module for convolutional neural networks[C]// The 38th International Conference on Machine Learning. New York: PLMR, 2021: 11863-11874. |
[16] | WANG K X, LIEW J H, ZOU Y T, et al. PANet: few-shot image semantic segmentation with prototype alignment[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9196-9205. |
[17] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787. |
[18] | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6153-6162. |
[19] | ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic Road Damage Detetion[EB/OL]. [2024-01-11]. https://arxiv.org/abs/2209.08538. |
[20] | ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 10323-10333. |
[21] | MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2021: 3138-3147. |
[22] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[3] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[4] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[5] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[6] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[7] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[8] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[9] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[10] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[11] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[12] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[13] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[14] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[15] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||