Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 793-806.DOI: 10.11996/JG.j.2095-302X.2025040793
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
DU Xin1,2(), REN Yangfu1,2,3(
), XU Senzhe4, WANG Juhong5, ZHENG Yufei5, ZHANG Songhai1,2,3
Received:
2024-10-05
Revised:
2025-02-06
Online:
2025-08-30
Published:
2025-08-11
Contact:
REN Yangfu
About author:
First author contact:DU Xin (2000-), master student. Her main research interest covers virtual reality. E-mail:du_xin2024@163.com
Supported by:
CLC Number:
DU Xin, REN Yangfu, XU Senzhe, WANG Juhong, ZHENG Yufei, ZHANG Songhai. Investigation of scene scaling gains in redirected walking within virtual reality[J]. Journal of Graphics, 2025, 46(4): 793-806.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040793
被试者 | 场景1 | 场景2 | 场景3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25% | PSE | 75% | 25% | PSE | 75% | 25% | PSE | 75% | ||
男 | 1 | 0.699 | 0.902 | 1.110 | 0.977 | 1.030 | 1.080 | 1.010 | 1.050 | 1.090 |
2 | 0.930 | 1.000 | 1.070 | 1.020 | 1.070 | 1.120 | 1.080 | 1.090 | 1.100 | |
3 | 0.966 | 1.150 | 1.340 | 0.909 | 0.978 | 1.050 | 0.995 | 1.070 | 1.140 | |
4 | 0.864 | 0.985 | 1.110 | 0.963 | 1.060 | 1.150 | 1.050 | 1.050 | 1.050 | |
5 | 1.150 | 1.320 | 1.500 | 0.990 | 1.050 | 1.110 | 1.010 | 1.050 | 1.090 | |
6 | 1.070 | 1.070 | 1.070 | 1.020 | 1.110 | 1.190 | 0.951 | 1.000 | 1.060 | |
7 | 0.930 | 1.000 | 1.070 | 0.943 | 1.020 | 1.100 | 1.010 | 1.050 | 1.090 | |
8 | 0.853 | 0.922 | 0.991 | 0.900 | 0.911 | 0.922 | 0.977 | 1.030 | 1.080 | |
9 | 0.795 | 0.883 | 0.971 | 1.020 | 1.070 | 1.120 | 1.020 | 1.070 | 1.120 | |
10 | 0.948 | 1.030 | 1.120 | 0.909 | 0.978 | 1.050 | 1.010 | 1.050 | 1.090 | |
女 | 1 | 0.859 | 0.950 | 1.040 | 1.180 | 1.230 | 1.280 | 1.110 | 1.150 | 1.190 |
2 | 0.878 | 0.944 | 1.010 | 1.020 | 1.020 | 1.020 | 0.977 | 0.989 | 1.000 | |
3 | 0.809 | 0.906 | 1.000 | 1.010 | 1.100 | 1.190 | 0.969 | 1.070 | 1.180 | |
4 | 0.788 | 0.800 | 0.812 | 0.890 | 0.900 | 0.910 | 0.988 | 1.000 | 1.010 | |
5 | 0.818 | 0.905 | 0.993 | 0.990 | 1.050 | 1.110 | 1.250 | 1.250 | 1.250 | |
6 | 0.681 | 0.780 | 0.878 | 0.961 | 1.030 | 1.090 | 1.000 | 1.010 | 1.020 | |
7 | 0.717 | 0.805 | 0.893 | 0.997 | 1.090 | 1.190 | 1.010 | 1.050 | 1.090 | |
8 | 1.290 | 1.460 | 1.620 | 0.842 | 0.895 | 0.949 | 0.881 | 0.891 | 0.900 | |
9 | 0.908 | 0.950 | 0.992 | 0.946 | 0.950 | 0.953 | 1.140 | 1.140 | 1.140 | |
10 | 0.694 | 0.783 | 0.871 | 0.934 | 1.040 | 1.140 | 1.100 | 1.110 | 1.120 | |
男性平均 | 0.885 | 1.020 | 1.160 | 0.953 | 1.030 | 1.110 | 1.000 | 1.050 | 1.100 | |
女性平均 | 0.775 | 0.928 | 1.080 | 0.945 | 1.040 | 1.130 | 0.989 | 1.070 | 1.150 | |
全体平均 | 0.827 | 0.977 | 1.130 | 0.949 | 1.030 | 1.120 | 0.993 | 1.060 | 1.120 |
Table 1 Individual psychological measurement function results
被试者 | 场景1 | 场景2 | 场景3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25% | PSE | 75% | 25% | PSE | 75% | 25% | PSE | 75% | ||
男 | 1 | 0.699 | 0.902 | 1.110 | 0.977 | 1.030 | 1.080 | 1.010 | 1.050 | 1.090 |
2 | 0.930 | 1.000 | 1.070 | 1.020 | 1.070 | 1.120 | 1.080 | 1.090 | 1.100 | |
3 | 0.966 | 1.150 | 1.340 | 0.909 | 0.978 | 1.050 | 0.995 | 1.070 | 1.140 | |
4 | 0.864 | 0.985 | 1.110 | 0.963 | 1.060 | 1.150 | 1.050 | 1.050 | 1.050 | |
5 | 1.150 | 1.320 | 1.500 | 0.990 | 1.050 | 1.110 | 1.010 | 1.050 | 1.090 | |
6 | 1.070 | 1.070 | 1.070 | 1.020 | 1.110 | 1.190 | 0.951 | 1.000 | 1.060 | |
7 | 0.930 | 1.000 | 1.070 | 0.943 | 1.020 | 1.100 | 1.010 | 1.050 | 1.090 | |
8 | 0.853 | 0.922 | 0.991 | 0.900 | 0.911 | 0.922 | 0.977 | 1.030 | 1.080 | |
9 | 0.795 | 0.883 | 0.971 | 1.020 | 1.070 | 1.120 | 1.020 | 1.070 | 1.120 | |
10 | 0.948 | 1.030 | 1.120 | 0.909 | 0.978 | 1.050 | 1.010 | 1.050 | 1.090 | |
女 | 1 | 0.859 | 0.950 | 1.040 | 1.180 | 1.230 | 1.280 | 1.110 | 1.150 | 1.190 |
2 | 0.878 | 0.944 | 1.010 | 1.020 | 1.020 | 1.020 | 0.977 | 0.989 | 1.000 | |
3 | 0.809 | 0.906 | 1.000 | 1.010 | 1.100 | 1.190 | 0.969 | 1.070 | 1.180 | |
4 | 0.788 | 0.800 | 0.812 | 0.890 | 0.900 | 0.910 | 0.988 | 1.000 | 1.010 | |
5 | 0.818 | 0.905 | 0.993 | 0.990 | 1.050 | 1.110 | 1.250 | 1.250 | 1.250 | |
6 | 0.681 | 0.780 | 0.878 | 0.961 | 1.030 | 1.090 | 1.000 | 1.010 | 1.020 | |
7 | 0.717 | 0.805 | 0.893 | 0.997 | 1.090 | 1.190 | 1.010 | 1.050 | 1.090 | |
8 | 1.290 | 1.460 | 1.620 | 0.842 | 0.895 | 0.949 | 0.881 | 0.891 | 0.900 | |
9 | 0.908 | 0.950 | 0.992 | 0.946 | 0.950 | 0.953 | 1.140 | 1.140 | 1.140 | |
10 | 0.694 | 0.783 | 0.871 | 0.934 | 1.040 | 1.140 | 1.100 | 1.110 | 1.120 | |
男性平均 | 0.885 | 1.020 | 1.160 | 0.953 | 1.030 | 1.110 | 1.000 | 1.050 | 1.100 | |
女性平均 | 0.775 | 0.928 | 1.080 | 0.945 | 1.040 | 1.130 | 0.989 | 1.070 | 1.150 | |
全体平均 | 0.827 | 0.977 | 1.130 | 0.949 | 1.030 | 1.120 | 0.993 | 1.060 | 1.120 |
[1] | SPARKES M. What is a metaverse[J]. New Scientist, 2021, 251(3348): 18. |
[2] | RAZZAQUE S, KOHN Z, WHITTON M C. Redirected walking[EB/OL]. [2024-04-04]. https://www.cs.unc.edu/techreports/01-007.pdf. |
[3] | ZHANG S H, CHEN C H, ZOLLMANN S. One-step out-of-place resetting for redirected walking in VR[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3327-3339. |
[4] | KRUSE L, LANGBEHN E, STEINICKE F. I can see on my feet while walking: sensitivity to translation gains with visible feet[C]// 2018 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2018: 305-312. |
[5] | WILLIAMS N L, PECK T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(11): 3158-3168. |
[6] | RIETZLER M, GUGENHEIMER J, HIRZLE T, et al. Rethinking redirected walking: on the use of curvature gains beyond perceptual limitations and revisiting bending gains[C]// 2018 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2018: 115-122. |
[7] | XU S Z, CHEN F X Y, GONG R, et al. BiRD: using bidirectional rotation gain differences to redirect users during back-and-forth head turns in walking[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(5): 2693-2702. |
[8] | KIM D, KIM J, SHIN J E, et al. Effects of virtual room size and objects on relative translation gain thresholds in redirected walking[C]// 2022 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2022: 379-388. |
[9] | WANG L W, CAI S Y, SANDOR C. Perceptual thresholds of visual size discrimination in augmented and virtual reality[J]. Computers & Graphics, 2023, 117: 105-113. |
[10] | HÉBERT-LAVOIE M, DOYON-POULIN P, OZELL B. Identification of visual functional thresholds for immersion assessment in virtual reality[J]. PRESENCE: Virtual and Augmented Reality, 2020, 29: 1-22. |
[11] | KIM D, KIM S, SHIN J E, et al. The effects of spatial configuration on relative translation gain thresholds in redirected walking[J]. Virtual Reality, 2023, 27(2): 1233-1250. |
[12] | RAZZAQUE S. Redirected walking[D]. Chapel Hill: The University of North Carolina at Chapel Hill, 2005. |
[13] | LI Y J, STEINICKE F, WANG M. A comprehensive review of redirected walking techniques: taxonomy, methods, and future directions[J]. Journal of Computer Science and Technology, 2022, 37(3): 561-583. |
[14] | LANGBEHN E, STEINICKE F. Redirected walking in virtual reality[M]//LEE N. Encyclopedia of Computer Graphics and Games. Cham: Springer, 2018: 26-27. |
[15] | LANGBEHN E, LUBOS P, BRUDER G, et al. Application of redirected walking in room-scale VR[C]// 2017 IEEE Virtual Reality. New York: IEEE Press, 2017: 449-450. |
[16] | SRA M, XU X H, MOTTELSON A, et al. VMotion: designing a seamless walking experience in VR[C]// 2018 Designing Interactive Systems Conference. New York: ACM, 2018: 59-70. |
[17] | SUN Q, PATNEY A, WEI L Y, et al. Towards virtual reality infinite walking: dynamic saccadic redirection[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 67. |
[18] |
周强, 张敏雄, 吴新丽, 等. 体感交互虚拟漫游的沉浸感评价[J]. 图学学报, 2020, 41(3): 342-349.
DOI |
ZHOU Q, ZHANG M X, WU X L, et al. Immersion evaluation of virtual roaming with proprioceptive interaction[J]. Journal of Graphics, 2020, 41(3): 342-349 (in Chinese).
DOI |
|
[19] | INTERRANTE V, RIES B, ANDERSON L. Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments[C]// 2007 IEEE Symposium on 3D User interfaces. New York: IEEE Press, 2007. |
[20] | ABTAHI P, GONZALEZ-FRANCO M, OFEK E, et al. I’m a giant: walking in large virtual environments at high speed gains[C]// 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2019: 522. |
[21] | CARDOSO J C S, PERROTTA A. A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays[J]. Computers & Graphics, 2019, 85: 55-73. |
[22] | XU S Z, HUANG K, FAN C W, et al. Spatial contraction based on velocity variation for natural walking in virtual reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(5): 2444-2453. |
[23] |
STEINICKE F, BRUDER G, JERALD J, et al. Estimation of detection thresholds for redirected walking techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17-27.
DOI PMID |
[24] |
马明明, 业全, 胡杨, 等. 头部旋转重定向的交互效率和眩晕感研究[J]. 图学学报, 2019, 40(3): 452-459.
DOI |
MA M M, YE Q, HU Y, et al. Research on the interaction efficiency and vertigo sensation of head rotation[J]. Journal of Graphics, 2019, 40(3): 452-459 (in Chinese). | |
[25] | TIRADO CORTES C A, CHEN H T, LIN C T. Analysis of VR sickness and gait parameters during non-isometric virtual walking with large translational gain[C]// The 17th International Conference on Virtual-Reality Continuum and its Applications in Industry. New York: ACM, 2019: 16. |
[26] | STEINICKE F, BRUDER G, ROPINSKI T, et al. Moving towards generally applicable redirected walking[EB/OL]. [2024-04-04]. https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.100/institut/Papers/viscom/2008/moving_towards.pdf#:-:text=In%20this%20paper%20we%20present%20an%20evaluation%20of,the%20design%20process%20of%20a%20virtual%20locomotion%20interface. |
[27] | NITZSCHE N, HANEBECK U D, SCHMIDT G. Motion compression for telepresent walking in large target environments[J]. Presence, 2004, 13(1): 44-60. |
[28] | GREEN D M, SWETS J A. Signal detection theory and psychophysics[M]. New York: Wiley, 1966: 61-62. |
[29] | HAUTUS M J, MACMILLAN N A, CREELMAN C D. Detection theory: a user’s guide[M]. 3rd ed. New York: Routledge, 2021: 89-90. |
[30] | GRECHKIN T, THOMAS J, AZMANDIAN M, et al. Revisiting detection thresholds for redirected walking: combining translation and curvature gains[C]// The ACM Symposium on Applied Perception. New York: ACM, 2016: 113-120. |
[31] | MEYER F, NOGALSKI M, FOHL W. Detection thresholds in audio-visual redirected walking[EB/OL]. [2024-04-04]. https://tore.tuhh.de/entities/publication/cd50e637-b253-4493-a107-ca55d636901c#:-:text=In%20this%20paper%20an%20experiment%20to%20measure%20the,the%20results%20are%20presented%20and%20compared%20to%20pre. |
[32] | ZHANG J X, LANGBEHN E, KRUPKE D, et al. Detection thresholds for rotation and translation gains in 360° video-based telepresence systems[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4): 1671-1680. |
[33] | SELZER M N, LARREA M L, CASTRO S M. Analysis of translation gains in virtual reality: the limits of space manipulation[J]. Virtual Reality, 2022, 26(4): 1459-1469. |
[34] | LUO E X, TANG K Y, XU S Z, et al. Walking telescope: exploring the zooming effect in expanding detection threshold range for translation gain[C]// The 12th International Conference on Computational Visual Media. Cham: Springer, 2024: 252-273. |
[35] | KENNEDY R S, LANE N E, BERBAUM K S, et al. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness[J]. The International Journal of Aviation Psychology, 1993, 3(3): 203-220. |
[36] | WANG C, ZHANG S H, ZHANG Y Z, et al. On rotation gains within and beyond perceptual limitations for seated VR[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3380-3391. |
[37] | SANAEI M, GILBERT S B, JAVADPOUR N, et al. The correlations of scene complexity, workload, presence, and cybersickness in a task-based VR game[C]// International Conference on Human-Computer Interaction. Cham: Springer, 2024: 277-289. |
[1] | ZHANG Yufei, DING Ding, LI Zhuying. A virtual reality experience for artistic re-creation based on emotion capture [J]. Journal of Graphics, 2025, 46(4): 775-782. |
[2] | ZHU Xiaoqiang, YANG Yifei. Free sculpting system in virtual reality environment [J]. Journal of Graphics, 2025, 46(2): 345-357. |
[3] | YANG Haozhong, KONG Xiaoyu, GU Ruikun, WANG Miao. Research progress and trends in large model technologies for virtual reality [J]. Journal of Graphics, 2024, 45(6): 1117-1131. |
[4] | LUAN Shuai, WU Jian, FAN Runze, WANG Lili. Observation quality field based collaborative object manipulation in VR [J]. Journal of Graphics, 2024, 45(6): 1338-1348. |
[5] | REN Yangfu, YU Ge, FU Yueyao, XU Senzhe, HE Yu, WANG Juhong, ZHANG Songhai. The impact of scenery and time on spatial orientation cognition in virtual reality [J]. Journal of Graphics, 2024, 45(6): 1349-1363. |
[6] | YAN Jiahao, LV Jian, HOU Yukang, MO Xinzhu. Research on the influence of eye movement interaction frequency on visual fatigue in virtual reality [J]. Journal of Graphics, 2024, 45(3): 528-538. |
[7] | WANG Haomiao, SANG Shengju, DUAN Xiaodong, ZHANG Weihua, TAO Tiwei, MA Ting. Collaborative 3D modeling technique in virtual reality [J]. Journal of Graphics, 2024, 45(1): 169-182. |
[8] | XIE Hong-xia, HU Yu-ning, ZHANG Yun, WANG Ya-qi, DU Hui, QIN Ai-hong. Survey of methods for scene analysis and content processing in panoramic images and videos [J]. Journal of Graphics, 2023, 44(4): 640-657. |
[9] | TANG Peng, SA Guo-dong, LIU Zhen-yu, TAN Jian-rong. Design of digital twin system for forging hydraulic press [J]. Journal of Graphics, 2023, 44(3): 609-615. |
[10] | ZHU Yong-ning , GE Ting , DU Sheng-yu , LOU Ze-ru , WANG Jian-min. A usability study of panoramic fluid painting system in immersive virtual environments [J]. Journal of Graphics, 2021, 42(5): 833-840. |
[11] | ZHAO Jian-jun, HUANG Jun-peng, CHEN Jun-liang . Human-computer interaction method in previz based on Leap Motion [J]. Journal of Graphics, 2021, 42(1): 71-78. |
[12] | ZHENG Ming-yu, LI Jia-he, ZHANG Han, LUO Yan-lin, SHEN Jia-li, ZHU Xiao-ming . Immersive physics learning environment with force feedback [J]. Journal of Graphics, 2021, 42(1): 79-86. |
[13] | TENG Jian, HUANG Jia-hui, GONG Kai . Design of virtual reality simulated driving teaching system based on BCI [J]. Journal of Graphics, 2020, 41(2): 217-223. |
[14] | QIU Yuan-hang1, SUN Xian-bo1, LIU Yong-di1, CAI Zheng-qing1, XU Hong-yong2 . Development and application of virtual reality software for the practical teaching of sewage treatment plant [J]. Journal of Graphics, 2020, 41(2): 233-236. |
[15] | LIN Ying-ying, CAI Rui-fan, ZHU Yu-zhen, TANG Xiang-jun, JIN Xiao-gang. Virtual reality pottery modeling system based on leap motion [J]. Journal of Graphics, 2020, 41(1): 57-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||