Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 998-1009.DOI: 10.11996/JG.j.2095-302X.2025050998
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHU Hongmiao1,2(), ZHONG Guojie1,2, ZHANG Yanci1,2(
)
Received:
2024-10-21
Accepted:
2025-02-12
Online:
2025-10-30
Published:
2025-09-10
Contact:
ZHANG Yanci
About author:
First author contact:ZHU Hongmiao (2000-), master student. Her main research interest covers computer graphics. E-mail:zhm001207@163.com
CLC Number:
ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning[J]. Journal of Graphics, 2025, 46(5): 998-1009.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025050998
Fig. 1 Complex point cloud scene ((a) Air conditioning outdoor unit on the building wall; (b) The podium in the auditorium; (c) Cars in the parking lot)
软硬件 | 实验环境 |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz |
内存 | 16 GB |
显卡 | NVIDIA GeForce RTX 3070 |
操作系统 | Windows 11 |
编译器 | Visual Studio Code |
开发库 | Python,C++,CUDA,Pytroch, Tensorflow,Numpy |
Table 1 Experimental software and hardware environment
软硬件 | 实验环境 |
---|---|
CPU | 12th Gen Intel(R) Core(TM) i5-12600KF 3.70 GHz |
内存 | 16 GB |
显卡 | NVIDIA GeForce RTX 3070 |
操作系统 | Windows 11 |
编译器 | Visual Studio Code |
开发库 | Python,C++,CUDA,Pytroch, Tensorflow,Numpy |
算法 | 数据集 | 训练 周期 | 批量 大小 | 样本 数量 |
---|---|---|---|---|
PointNet++[ | S3DIS | 32 | 10 | 4 096 |
PointNet[ | SCU | 20 | 4 | 1 024 |
K-means+PointNet[ | SCU | 20 | 4 | 1 024 |
DBSCAN[ | SCU | 20 | 4 | 1 024 |
EM[ | SCU | 20 | 4 | 1 024 |
Ours+PointNet++[ | S3DIS | 32 | 10 | 4 096 |
Ours+PointNet[ | SCU | 20 | 4 | 1 024 |
Table 2 Training configuration
算法 | 数据集 | 训练 周期 | 批量 大小 | 样本 数量 |
---|---|---|---|---|
PointNet++[ | S3DIS | 32 | 10 | 4 096 |
PointNet[ | SCU | 20 | 4 | 1 024 |
K-means+PointNet[ | SCU | 20 | 4 | 1 024 |
DBSCAN[ | SCU | 20 | 4 | 1 024 |
EM[ | SCU | 20 | 4 | 1 024 |
Ours+PointNet++[ | S3DIS | 32 | 10 | 4 096 |
Ours+PointNet[ | SCU | 20 | 4 | 1 024 |
算法 | mIoU | Table (5.5) | Chair (2.9) | Sofa (1.7) | Ceiling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (69.5) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KPConv rigid[ | 65.4 | 80.2 | 90.1 | 66.4 | 92.6 | 97.3 | 81.4 | 0.0 | 16.5 | 54.5 | 69.5 | 74.6 | 63.7 | 58.1 |
RandLA[ | 63.0 | 77.2 | 85.2 | 71.5 | 92.4 | 96.7 | 80.6 | 0.0 | 18.3 | 61.3 | 43.3 | 71.0 | 69.2 | 52.3 |
PointCNN[ | 57.3 | 74.4 | 80.6 | 31.7 | 92.3 | 62.1 | 79.4 | 0.0 | 17.6 | 22.8 | 62.1 | 66.7 | 62.1 | 56.7 |
SCF-Net[ | 63.3 | 72.2 | 81.1 | 62.1 | 93.2 | 95.4 | 78.1 | 0.0 | 43.8 | 51.2 | 60.4 | 70.7 | 65.8 | 56.4 |
SPH3D[ | 59.5 | 79.9 | 86.9 | 33.2 | 93.3 | 97.1 | 81.1 | 0.0 | 33.2 | 45.8 | 43.8 | 71.5 | 54.1 | 53.7 |
Ours | 63.7 | 84.9 | 90.4 | 74.3 | 93.7 | 96.7 | 78.3 | 0.0 | 21.8 | 54.7 | 64.8 | 61.1 | 54.7 | 52.8 |
Table 3 Results of various algorithms on Area_5 of the S3DIS dataset/%
算法 | mIoU | Table (5.5) | Chair (2.9) | Sofa (1.7) | Ceiling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (69.5) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KPConv rigid[ | 65.4 | 80.2 | 90.1 | 66.4 | 92.6 | 97.3 | 81.4 | 0.0 | 16.5 | 54.5 | 69.5 | 74.6 | 63.7 | 58.1 |
RandLA[ | 63.0 | 77.2 | 85.2 | 71.5 | 92.4 | 96.7 | 80.6 | 0.0 | 18.3 | 61.3 | 43.3 | 71.0 | 69.2 | 52.3 |
PointCNN[ | 57.3 | 74.4 | 80.6 | 31.7 | 92.3 | 62.1 | 79.4 | 0.0 | 17.6 | 22.8 | 62.1 | 66.7 | 62.1 | 56.7 |
SCF-Net[ | 63.3 | 72.2 | 81.1 | 62.1 | 93.2 | 95.4 | 78.1 | 0.0 | 43.8 | 51.2 | 60.4 | 70.7 | 65.8 | 56.4 |
SPH3D[ | 59.5 | 79.9 | 86.9 | 33.2 | 93.3 | 97.1 | 81.1 | 0.0 | 33.2 | 45.8 | 43.8 | 71.5 | 54.1 | 53.7 |
Ours | 63.7 | 84.9 | 90.4 | 74.3 | 93.7 | 96.7 | 78.3 | 0.0 | 21.8 | 54.7 | 64.8 | 61.1 | 54.7 | 52.8 |
场景 | 算法 | mIoU | Car (0.9) | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) |
---|---|---|---|---|---|---|---|
Scene 1 | DBSCAN + PointNet | 60.7 | 0.9 | 73.8 | 77.8 | 75.5 | 75.5 |
K-Means + PointNet | 58.4 | 1.1 | 60.0 | 84.2 | 74.1 | 72.5 | |
EM + PointNet | 63.5 | 14.4 | 63.4 | 83.0 | 78.0 | 78.9 | |
Ours(MS + PointNet) | 68.7 | 27.4 | 75.3 | 83.1 | 79.4 | 78.2 | |
Scene 2 | DBSCAN + PointNet | 67.0 | 23.3 | 61.9 | 90.3 | 92.7 | |
K-Means + PointNet | 70.0 | 28.0 | 70.8 | 89.5 | 91.2 | ||
EM + PointNet | 69.9 | 26.3 | 69.5 | 86.7 | 89.2 | ||
Ours(MS + PointNet) | 72.9 | 34.5 | 70.4 | 92.7 | 94.0 | ||
Scene 3 | DBSCAN + PointNet | 59.9 | 22.7 | 79.6 | 46.5 | 90.9 | |
K-Means + PointNet | 59.5 | 16.8 | 76.9 | 54.1 | 90.0 | ||
EM + PointNet | 57.6 | 14.6 | 80.7 | 47.0 | 88.0 | ||
Ours(MS + PointNet) | 65.3 | 28.3 | 84.3 | 57.0 | 91.6 |
Table 4 Test results/%
场景 | 算法 | mIoU | Car (0.9) | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) |
---|---|---|---|---|---|---|---|
Scene 1 | DBSCAN + PointNet | 60.7 | 0.9 | 73.8 | 77.8 | 75.5 | 75.5 |
K-Means + PointNet | 58.4 | 1.1 | 60.0 | 84.2 | 74.1 | 72.5 | |
EM + PointNet | 63.5 | 14.4 | 63.4 | 83.0 | 78.0 | 78.9 | |
Ours(MS + PointNet) | 68.7 | 27.4 | 75.3 | 83.1 | 79.4 | 78.2 | |
Scene 2 | DBSCAN + PointNet | 67.0 | 23.3 | 61.9 | 90.3 | 92.7 | |
K-Means + PointNet | 70.0 | 28.0 | 70.8 | 89.5 | 91.2 | ||
EM + PointNet | 69.9 | 26.3 | 69.5 | 86.7 | 89.2 | ||
Ours(MS + PointNet) | 72.9 | 34.5 | 70.4 | 92.7 | 94.0 | ||
Scene 3 | DBSCAN + PointNet | 59.9 | 22.7 | 79.6 | 46.5 | 90.9 | |
K-Means + PointNet | 59.5 | 16.8 | 76.9 | 54.1 | 90.0 | ||
EM + PointNet | 57.6 | 14.6 | 80.7 | 47.0 | 88.0 | ||
Ours(MS + PointNet) | 65.3 | 28.3 | 84.3 | 57.0 | 91.6 |
方法 | 场景 | OA | mIoU/% | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|
PointNet | Scene 1 | 79.8 | 60.1 | 68.4 | 72.2 | 73.3 | 71.9 | 14.9 |
Scene 2 | 81.5 | 65.6 | 61.5 | 87.1 | 92.0 | 21.9 | ||
Scene 3 | 86.3 | 50.6 | 80.1 | 22.4 | 85.4 | 14.5 | ||
Ours | Scene 1 | 89.4 | 68.7 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
Scene 2 | 87.6 | 72.9 | 70.4 | 92.7 | 94.0 | 34.5 | ||
Scene 3 | 91.4 | 65.3 | 84.3 | 57.0 | 91.6 | 28.3 |
Table 5 Results of PointNet embedded and unembedded modules on SCU dataset/%
方法 | 场景 | OA | mIoU/% | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|
PointNet | Scene 1 | 79.8 | 60.1 | 68.4 | 72.2 | 73.3 | 71.9 | 14.9 |
Scene 2 | 81.5 | 65.6 | 61.5 | 87.1 | 92.0 | 21.9 | ||
Scene 3 | 86.3 | 50.6 | 80.1 | 22.4 | 85.4 | 14.5 | ||
Ours | Scene 1 | 89.4 | 68.7 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
Scene 2 | 87.6 | 72.9 | 70.4 | 92.7 | 94.0 | 34.5 | ||
Scene 3 | 91.4 | 65.3 | 84.3 | 57.0 | 91.6 | 28.3 |
方法 | Room | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet++ | Conference 1 | 62.2 | 92.4 | 95.3 | 81.4 | 3.5 | 64.5 | 1.2 | 75.2 | 84.1 | 66.3 | 57.8 | |||
Conference 2 | 54.0 | 91.0 | 97.1 | 74.6 | 1.3 | 11.1 | 46.2 | 73.2 | 71.5 | 84.7 | 1.4 | 41.5 | |||
Conference 3 | 60.8 | 95.3 | 97.9 | 71.4 | 15.6 | 71.2 | 0.4 | 77.4 | 63.6 | 62.1 | 52.7 | ||||
Ours | Conference 1 | 63.6 | 93.6 | 96.8 | 87.1 | 1.6 | 69.8 | 2.4 | 76.3 | 86.4 | 67.1 | 54.9 | |||
Conference 2 | 60.0 | 94.2 | 97.1 | 83.6 | 0.4 | 9.7 | 68.2 | 74.6 | 83.1 | 81.4 | 15.4 | 52.5 | |||
Conference 3 | 71.1 | 97.7 | 96.1 | 84.6 | 27.9 | 64.3 | 76.8 | 79.4 | 67.2 | 56.3 | 61.1 |
Table 6 Results of PointNet++ embedded and unembedded modules on Area 5 Conference Room/%
方法 | Room | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet++ | Conference 1 | 62.2 | 92.4 | 95.3 | 81.4 | 3.5 | 64.5 | 1.2 | 75.2 | 84.1 | 66.3 | 57.8 | |||
Conference 2 | 54.0 | 91.0 | 97.1 | 74.6 | 1.3 | 11.1 | 46.2 | 73.2 | 71.5 | 84.7 | 1.4 | 41.5 | |||
Conference 3 | 60.8 | 95.3 | 97.9 | 71.4 | 15.6 | 71.2 | 0.4 | 77.4 | 63.6 | 62.1 | 52.7 | ||||
Ours | Conference 1 | 63.6 | 93.6 | 96.8 | 87.1 | 1.6 | 69.8 | 2.4 | 76.3 | 86.4 | 67.1 | 54.9 | |||
Conference 2 | 60.0 | 94.2 | 97.1 | 83.6 | 0.4 | 9.7 | 68.2 | 74.6 | 83.1 | 81.4 | 15.4 | 52.5 | |||
Conference 3 | 71.1 | 97.7 | 96.1 | 84.6 | 27.9 | 64.3 | 76.8 | 79.4 | 67.2 | 56.3 | 61.1 |
方法 | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point Transformer[ | 70.4 | 94.0 | 98.5 | 86.3 | 38.0 | 63.4 | 74.3 | 89.1 | 82.4 | 74.3 | 80.2 | 76.0 | 59.3 | |
Ours | 71.7 | 95.2 | 98.1 | 88.4 | 41.6 | 62.8 | 74.4 | 90.4 | 86.3 | 74.5 | 80.0 | 79.2 | 61.6 |
Table 7 Results of Point Transformer embedded and unembedded modules on Area 5 Conference Room/%
方法 | mIoU | Celling (18.9) | Floor (15.4) | Wall (28.8) | Beam (1) | Column (2.8) | Window (7.3) | Door (3.5) | Table (5.5) | Chair (2.9) | Sofa (1.7) | Bookcase (16.3) | Board (2.5) | Clutter (9.0) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Point Transformer[ | 70.4 | 94.0 | 98.5 | 86.3 | 38.0 | 63.4 | 74.3 | 89.1 | 82.4 | 74.3 | 80.2 | 76.0 | 59.3 | |
Ours | 71.7 | 95.2 | 98.1 | 88.4 | 41.6 | 62.8 | 74.4 | 90.4 | 86.3 | 74.5 | 80.0 | 79.2 | 61.6 |
实验 | B | NC | MSF | NNF | mIoU | OA | SOOA | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp 1 | × | | | | 66.8 | 85.4 | 53.1 | 74.3 | 81.2 | 77.6 | 75.7 | 25.4 |
Exp 2 | | × | | | 61.9 | 80.4 | 44.7 | 72.5 | 75.4 | 75.8 | 71.4 | 14.3 |
Exp 3 | | | × | | 62.7 | 82.9 | 47.4 | 74.2 | 72.4 | 77.2 | 74.3 | 15.5 |
Exp 4 | | | | × | 63.9 | 83.7 | 49.3 | 74.2 | 74.2 | 78.5 | 76.3 | 16.1 |
Exp 5 | | | | | 68.7 | 89.4 | 56.3 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
Table 8 Results table of module ablation experiments/%
实验 | B | NC | MSF | NNF | mIoU | OA | SOOA | Ground (21.2) | Meadow (3.1) | Plant (23.9) | Building (51.0) | Car (0.9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp 1 | × | | | | 66.8 | 85.4 | 53.1 | 74.3 | 81.2 | 77.6 | 75.7 | 25.4 |
Exp 2 | | × | | | 61.9 | 80.4 | 44.7 | 72.5 | 75.4 | 75.8 | 71.4 | 14.3 |
Exp 3 | | | × | | 62.7 | 82.9 | 47.4 | 74.2 | 72.4 | 77.2 | 74.3 | 15.5 |
Exp 4 | | | | × | 63.9 | 83.7 | 49.3 | 74.2 | 74.2 | 78.5 | 76.3 | 16.1 |
Exp 5 | | | | | 68.7 | 89.4 | 56.3 | 75.3 | 83.1 | 79.4 | 78.2 | 27.4 |
[1] | HUANG W, LIANG H, LIN L, et al. A fast point cloud ground segmentation approach based on coarse-to-fine Markov random field[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7841-7854. |
[2] | 张玥焜, 余文杰, 赵习之, 等. 基于机载激光雷达点云的交互式树木分割与建模方法研究[J]. 图学学报, 2021, 42(4): 599-607. |
ZHANG Y K, YU W J, ZHAO X Z, et al. Interactive tree segmentation and modeling from ALS point clouds[J]. Journal of Graphics, 2021, 42(4): 599-607 (in Chinese).
DOI |
|
[3] |
牛辰庚, 刘玉杰, 李宗民, 等. 基于点云数据的三维目标识别和模型分割方法[J]. 图学学报, 2019, 40(2): 274-281.
DOI |
NIU C Y, LIU Y J, LI Z M, et al. 3D object recognition and model segmentation based on point cloud data[J]. Journal of Graphics, 2019, 40(2): 274-281 (in Chinese). | |
[4] | ZHU X G, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9939-9948. |
[5] | YAN X, GAO J T, LI J, et al. Sparse single sweep LiDAR point cloud segmentation via learning contextual shape priors from scene completion[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3101-3109. |
[6] | XU C F, WU B C, WANG Z N, et al. SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 1-19. |
[7] | CHARLES R Q, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[8] | CHARLES R Q, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2024-04-20]. http://arxiv.org/pdf/1706.02413. |
[9] | THOMAS H, CHARLES R Q, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6410-6419. |
[10] | TANG H T, LIU Z J, ZHAO S Y, et al. Searching efficient 3D architectures with sparse point-voxel convolution[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 685-702. |
[11] |
TAO A, DUAN Y Q, WEI Y, et al. SegGroup: seg-level supervision for 3D instance and semantic segmentation[J]. IEEE Transactions on Image Processing, 2022, 31: 4952-4965.
DOI PMID |
[12] | GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018. |
[13] | FENG, M T, LIANG Z, LIN X F, et al.. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognit. 2020, 107: 107446. |
[14] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-04-20]. https://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#KipfW17. |
[15] | ZOU Y, YU Z D, VIJAYA KUMAR B V K, et al. Domain adaptation for semantic segmentation via class-balanced self-training[EB/OL]. [2024-04-20]. http://arxiv.org/abs/1810.07911?context=cs.LG. |
[16] | HOU H Y, SHEN M Y, HSU C C, et al. Ensemble fusion for small object detection[C]// The 18th International Conference on Machine Vision and Applications. New York: IEEE Press, 2023: 1-6. |
[17] | XIE Y X, TIAN J J, ZHU X X. Linking points with labels in 3D: a review of point cloud semantic segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. |
[18] | HU Q Y, YANG B, XIE L H, et al. RandLA-net: efficient semantic segmentation of large-scale point clouds[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11108-11117. |
[19] | WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10296-10305. |
[20] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics (TOG), 2019, 38(5): 146. |
[21] | LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on X-transformed points[C]// The 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 828-838. |
[22] | FAN S Q, DONG Q L, ZHU F H, et al. SCF-net: learning spatial contextual features for large-scale point cloud segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14499-14508. |
[23] | LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3664-3680. |
[24] | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2921-2929. |
[25] | ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 16239-16248. |
[26] | WU X Y, LAO Y X, JIANG L, et al. Point transformer V2:grouped vector attention and partition-based pooling[EB/OL]. [2024-04-17]. https://doi.org/10.48550/arXiv.2210.05666. |
[27] | WU X Y, JIANG L, WANG P S, et al. Point transformer V3: simpler, faster, stronger[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 4840-4851. |
[28] | BI Y X, LIU P, SHI J L, et al. A multi-modal fusion 3D semantic segmentation method[C]// 2023 3rd International Conference on Electronic Information Engineering and Computer Science. New York: IEEE Press, 2023: 542-545. |
[29] | CARDACE A, CONTI A, RAMIREZ P Z, et al. Boosting multi-modal unsupervised domain adaptation for LiDAR semantic segmentation by self-supervised depth completion[J]. IEEE Access, 2023, 11: 85155-85164. |
[30] | DU S Q, WANG W X, GUO R Z, et al. AsymFormer: asymmetrical cross-modal representation learning for mobile platform real-time RGB-D semantic segmentation[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2024: 7608-7615. |
[31] |
XU R, WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
PMID |
[32] | STAUFFER C, GRIMSION W E L. Adaptive background mixture models for real-time tracking[C]// 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 1999: 246-252. |
[33] | LLOYD S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2): 129-137. |
[34] | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// The 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto: AAAI Press, 1996: 226-231. |
[35] | COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2000: 142-149. |
[36] | MELZER T. Non-parametric segmentation of ALS point clouds using mean shift[J]. Journal of Applied Geodesy, 2007, 1(3): 159-170. |
[37] | ZHANG Z X, ZHANG L Q, TONG X H, et al. A multilevel point-cluster-based discriminative feature for ALS point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3309-3321. |
[38] | YUE W L, LU J G, ZHOU W H, et al. A new plane segmentation method of point cloud based on mean shift and RANSAC[C]// 2018 Chinese Control and Decision Conference. New York: IEEE Press, 2018: 1658-1663. |
[39] | ZHANG Z X, ZHANG L Q, TONG X H, et al. Discriminative- dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7309-7322. |
[40] | CHEN C, LI G B, XU R J, et al. ClusterNet: deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4994-5002. |
[41] | SALGADO-UGARTE I H, PÉREZ-HERNÁNDEZ M A. Exploring the use of variable bandwidth kernel density estimators[J]. The Stata Journal, 2003, 3(2): 133-147. |
[42] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. New York: Routledge, 1998: 95-119. |
[43] | WU D Y, DING Y, ZHANG M F, et al. Multi-features refinement and aggregation for medical brain segmentation[J]. IEEE Access, 2020, 8: 57483-57496. |
[44] | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 27-30. |
[45] | COMANICIU D, MEER P. Mean shift analysis and applications[C]// The 7th IEEE International Conference on Computer Vision. New York: IEEE Press, 1999: 1197-1203. |
[1] | CHEN Dong, LI Changlong, DU Zhenlong, SONG Shuang, LI Xiaoli. Intelligent depiction to illumination and shadow: robust video shadow extraction based on SAM [J]. Journal of Graphics, 2025, 46(4): 739-745. |
[2] | WANG Ziyu, CAO Weiwei, CAO Yuzhu, LIU Meng, CHEN Jun, LIU Zhaobang, ZHENG Jian. Semi-supervised pulmonary airway segmentation based on dynamically decoupling intra-class regions [J]. Journal of Graphics, 2025, 46(4): 763-774. |
[3] | WANG Daolei, DING Zijian, YANG Jun, ZHENG Shaokai, ZHU Rui, ZHAO Wenbin. Large scene reconstruction method based on voxel grid feature of NeRF [J]. Journal of Graphics, 2025, 46(3): 502-509. |
[4] | SUN Hao, XIE Tao, HE Long, GUO Wenzhong, YU Yongfang, WU Qijun, WANG Jianwei, DONG Hui. Research on multimodal text-visual large model for robotic terrain perception algorithm [J]. Journal of Graphics, 2025, 46(3): 558-567. |
[5] | CUI Lisha, SONG Zhiwen, JIANG Xiaoheng, MA Xin, CHEN Enqing, XU Mingliang. An edge and sematic-aware segmentation network for defect detection [J]. Journal of Graphics, 2025, 46(3): 578-587. |
[6] | LI Zhihuan, NING Xiaojuan, LV Zhiyong, SHI Zhenghao, JIN Haiyan, WANG Yinghui, ZHOU Wenming. DEMF-Net: dual-branch feature enhancement and multi-scale fusion for semantic segmentation of large-scale point clouds [J]. Journal of Graphics, 2025, 46(2): 259-269. |
[7] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
[8] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
[9] | LIU Gaoyi, HU Ruizhen, LIU Ligang. 3D Gaussian splatting semantic segmentation and editing based on 2D feature distillation [J]. Journal of Graphics, 2025, 46(2): 312-321. |
[10] | ZHANG Tiansheng, ZHU Minfeng, REN Yiwen, WANG Chenhan, ZHANG Lidong, ZHANG Wei, CHEN Wei. BPA-SAM: box prompt augmented SAM for traditional Chinese realistic painting [J]. Journal of Graphics, 2025, 46(2): 322-331. |
[11] | SUN Heyi, LI Yixiao, TIAN Xi, ZHANG Songhai. Image to 3D vase generation technology combining procedural content generation and diffusion models [J]. Journal of Graphics, 2025, 46(2): 332-344. |
[12] | CHEN Ruiqi, LIU Xiaofei, WAN Feng, HOU Peng, SHEN Jinyi. Simulation and prediction method of satellite solar wing deployment test driven by digital twin [J]. Journal of Graphics, 2025, 46(2): 449-458. |
[13] | WANG Yan, ZHANG Muyu, LIU Xiuzhen. Visual interactive meaning evaluation method of movie posters based on deep learning [J]. Journal of Graphics, 2025, 46(1): 221-232. |
[14] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[15] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||