Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 288-299.DOI: 10.11996/JG.j.2095-302X.2025020288
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHAI Yongjie(), WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming(
), WANG Yaru
Received:
2024-07-16
Accepted:
2024-10-24
Online:
2025-04-30
Published:
2025-04-24
Contact:
WANG Qianming
About author:
First author contact:ZHAI Yongjie (1972-), professor, Ph.D. His main research interest covers power vision. E-mail:zhaiyongjie@ncepu.edu.cn
Supported by:
CLC Number:
ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method[J]. Journal of Graphics, 2025, 46(2): 288-299.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020288
模型 | 方法 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR100 | FPS |
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN [ | Baseline | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 48.1 | 16.4 |
CQPR Faster | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 50.6 | 25.0 | |
Cascade R-CNN [ | Baseline | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 51.2 | 14.7 |
CQPR Cascade | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 52.3 | 10.8 | |
Libra R-CNN [ | Baseline | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 49.6 | 10.7 |
CQPR Libra | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 51.0 | 24.0 | |
Dynamic R-CNN [ | Baseline | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 46.6 | 25.9 |
CQPR Dynamic | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 49.4 | 24.7 |
Table 1 Average metrics for ten classes of fittings testing
模型 | 方法 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR100 | FPS |
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN [ | Baseline | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 48.1 | 16.4 |
CQPR Faster | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 50.6 | 25.0 | |
Cascade R-CNN [ | Baseline | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 51.2 | 14.7 |
CQPR Cascade | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 52.3 | 10.8 | |
Libra R-CNN [ | Baseline | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 49.6 | 10.7 |
CQPR Libra | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 51.0 | 24.0 | |
Dynamic R-CNN [ | Baseline | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 46.6 | 25.9 |
CQPR Dynamic | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 49.4 | 24.7 |
模型 | 方法 | PT | UT | SP | WT | YP | HB | CT | BT | AB | PG |
---|---|---|---|---|---|---|---|---|---|---|---|
Faster R-CNN[ | Baseline | 84.5 | 76.7 | 85.3 | 76.2 | 77.7 | 76.2 | 56.5 | 94.0 | 83.9 | 78.2 |
CQPR Faster | 93.9 | 77.5 | 89.4 | 82.5 | 81.0 | 79.9 | 62.5 | 94.2 | 85.8 | 81.9 | |
Cascade R-CNN[ | Baseline | 91.4 | 76.6 | 88.1 | 70.5 | 76.3 | 77.2 | 59.5 | 94.7 | 84.7 | 75.4 |
CQPR Cascade | 91.6 | 78.5 | 88.0 | 79.1 | 78.9 | 79.1 | 65.3 | 93.2 | 85.2 | 85.0 | |
Libra R-CNN[ | Baseline | 89.1 | 78.9 | 87.5 | 77.1 | 77.5 | 78.4 | 62,1 | 95.5 | 84.6 | 72.0 |
CQPR Libra | 93.7 | 80.5 | 89.4 | 82.5 | 79.8 | 80.1 | 64.5 | 94.7 | 85.2 | 86.3 | |
Dynamic R-CNN[ | Baseline | 91.3 | 74.1 | 79.9 | 58.8 | 67.4 | 75.7 | 52.6 | 93.9 | 83.8 | 72.8 |
CQPR Dynamic | 85.3 | 76.4 | 82.3 | 59.5 | 73.9 | 77.2 | 56.0 | 93.3 | 84.1 | 85.4 |
Table 2 The detection accuracy AP50 results for each type of fittings
模型 | 方法 | PT | UT | SP | WT | YP | HB | CT | BT | AB | PG |
---|---|---|---|---|---|---|---|---|---|---|---|
Faster R-CNN[ | Baseline | 84.5 | 76.7 | 85.3 | 76.2 | 77.7 | 76.2 | 56.5 | 94.0 | 83.9 | 78.2 |
CQPR Faster | 93.9 | 77.5 | 89.4 | 82.5 | 81.0 | 79.9 | 62.5 | 94.2 | 85.8 | 81.9 | |
Cascade R-CNN[ | Baseline | 91.4 | 76.6 | 88.1 | 70.5 | 76.3 | 77.2 | 59.5 | 94.7 | 84.7 | 75.4 |
CQPR Cascade | 91.6 | 78.5 | 88.0 | 79.1 | 78.9 | 79.1 | 65.3 | 93.2 | 85.2 | 85.0 | |
Libra R-CNN[ | Baseline | 89.1 | 78.9 | 87.5 | 77.1 | 77.5 | 78.4 | 62,1 | 95.5 | 84.6 | 72.0 |
CQPR Libra | 93.7 | 80.5 | 89.4 | 82.5 | 79.8 | 80.1 | 64.5 | 94.7 | 85.2 | 86.3 | |
Dynamic R-CNN[ | Baseline | 91.3 | 74.1 | 79.9 | 58.8 | 67.4 | 75.7 | 52.6 | 93.9 | 83.8 | 72.8 |
CQPR Dynamic | 85.3 | 76.4 | 82.3 | 59.5 | 73.9 | 77.2 | 56.0 | 93.3 | 84.1 | 85.4 |
模型 | PRM | CSQN | AP | AP50 | AP75 | APS | APM | APL | FPS |
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 16.4 | ||
√ | 42.3 | 82.0 | 39.4 | 16.2 | 32.6 | 44.2 | 15.1 | ||
√ | 42.2 | 82.0 | 39.2 | 19.5 | 32.2 | 44.1 | 27.4 | ||
√ | √ | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 25.0 | |
Cascade R-CNN | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 14.7 | ||
√ | 43.0 | 80.5 | 42.2 | 18.7 | 31.7 | 45.0 | 7.1 | ||
√ | 44.1 | 81.9 | 42.5 | 21.0 | 30.5 | 46.1 | 23.0 | ||
√ | √ | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 10.8 | |
Libra R-CNN | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 10.7 | ||
√ | 43.4 | 81.7 | 40.7 | 18.8 | 37.5 | 45.2 | 14.8 | ||
√ | 43.2 | 81.9 | 38.5 | 20.8 | 32.5 | 45.2 | 25.9 | ||
√ | √ | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 24.0 | |
Dynamic R-CNN | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 25.9 | ||
√ | 40.8 | 75.6 | 39.6 | 18.4 | 36.3 | 42.5 | 15.8 | ||
√ | 40.5 | 75.8 | 39.3 | 20.1 | 31.2 | 42.5 | 26.9 | ||
√ | √ | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 24.7 |
Table 3 Ablation on model structure
模型 | PRM | CSQN | AP | AP50 | AP75 | APS | APM | APL | FPS |
---|---|---|---|---|---|---|---|---|---|
Faster R-CNN | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 16.4 | ||
√ | 42.3 | 82.0 | 39.4 | 16.2 | 32.6 | 44.2 | 15.1 | ||
√ | 42.2 | 82.0 | 39.2 | 19.5 | 32.2 | 44.1 | 27.4 | ||
√ | √ | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 25.0 | |
Cascade R-CNN | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 14.7 | ||
√ | 43.0 | 80.5 | 42.2 | 18.7 | 31.7 | 45.0 | 7.1 | ||
√ | 44.1 | 81.9 | 42.5 | 21.0 | 30.5 | 46.1 | 23.0 | ||
√ | √ | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 10.8 | |
Libra R-CNN | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 10.7 | ||
√ | 43.4 | 81.7 | 40.7 | 18.8 | 37.5 | 45.2 | 14.8 | ||
√ | 43.2 | 81.9 | 38.5 | 20.8 | 32.5 | 45.2 | 25.9 | ||
√ | √ | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 24.0 | |
Dynamic R-CNN | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 25.9 | ||
√ | 40.8 | 75.6 | 39.6 | 18.4 | 36.3 | 42.5 | 15.8 | ||
√ | 40.5 | 75.8 | 39.3 | 20.1 | 31.2 | 42.5 | 26.9 | ||
√ | √ | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 24.7 |
模型 | PRM | CSQN | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|---|---|
Faster R-CNN | 42.9 | 80.6 | 42.7 | 13.9 | 31.1 | 45.2 | ||
√ | 46.3 | 82.6 | 47.5 | 15.3 | 35.2 | 48.3 | ||
√ | √ | 44.8 | 82.7 | 45.7 | 19.7 | 35.2 | 46.8 | |
Cascade R-CNN | 44.6 | 81.2 | 45.8 | 17.5 | 32.4 | 46.9 | ||
√ | 46.5 | 81.9 | 49.2 | 14.4 | 32.8 | 48.9 | ||
√ | √ | 47.3 | 83.6 | 51.1 | 22.1 | 35.9 | 49.4 | |
Libra R-CNN | 43.8 | 81.0 | 41.8 | 18.6 | 32.6 | 45.8 | ||
√ | 46.2 | 82.8 | 48.0 | 17.3 | 35.8 | 48.3 | ||
√ | √ | 45.9 | 84.3 | 48.7 | 19.8 | 35.0 | 47.9 | |
Dynamic R-CNN | 39.8 | 69.1 | 43.5 | 8.8 | 27.8 | 42.1 | ||
√ | 44.6 | 76.9 | 45.8 | 15.3 | 34.3 | 46.7 | ||
√ | √ | 45.3 | 79.3 | 46.2 | 24.5 | 34.1 | 47.3 |
Table 4 Dense occlusion test set detection results
模型 | PRM | CSQN | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|---|---|
Faster R-CNN | 42.9 | 80.6 | 42.7 | 13.9 | 31.1 | 45.2 | ||
√ | 46.3 | 82.6 | 47.5 | 15.3 | 35.2 | 48.3 | ||
√ | √ | 44.8 | 82.7 | 45.7 | 19.7 | 35.2 | 46.8 | |
Cascade R-CNN | 44.6 | 81.2 | 45.8 | 17.5 | 32.4 | 46.9 | ||
√ | 46.5 | 81.9 | 49.2 | 14.4 | 32.8 | 48.9 | ||
√ | √ | 47.3 | 83.6 | 51.1 | 22.1 | 35.9 | 49.4 | |
Libra R-CNN | 43.8 | 81.0 | 41.8 | 18.6 | 32.6 | 45.8 | ||
√ | 46.2 | 82.8 | 48.0 | 17.3 | 35.8 | 48.3 | ||
√ | √ | 45.9 | 84.3 | 48.7 | 19.8 | 35.0 | 47.9 | |
Dynamic R-CNN | 39.8 | 69.1 | 43.5 | 8.8 | 27.8 | 42.1 | ||
√ | 44.6 | 76.9 | 45.8 | 15.3 | 34.3 | 46.7 | ||
√ | √ | 45.3 | 79.3 | 46.2 | 24.5 | 34.1 | 47.3 |
Fig. 6 A visual comparison of the detection results between the proposed method and the baseline model ((a), (i) Faster R-CNN; (b), (j) Cascade R-CNN; (c), (k) Libra R-CNN; (d), (l) Dynamic R-CNN; (e), (m) CQPR Faster; (f), (n) CQPR Cascade; (g), (o) CQPR Libra; (h), (p) CQPR Dynamic)
Fig. 7 Comparison of detection results visualization on dense occlusion test set ((a) Faster R-CNN; (b) Cascade R-CNN; (c) Libra R-CNN; (d) Dynamic R-CNN; (e) PRM Faster; (f) PRM Cascade; (g) PRM Libra; (h) PRM Dynamic)
模型 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR100 | ARS | FPS |
---|---|---|---|---|---|---|---|---|---|
YOLOv7 | 36.4 | 73.4 | 32.1 | 14.9 | 25.9 | 38.3 | 48.3 | 22.9 | 33.1 |
YOLOv8 | 41.1 | 77.7 | 40.6 | 13.6 | 27.4 | 43.7 | 51.0 | 25.0 | 50.4 |
SSD | 18.6 | 46.5 | 12.1 | 0.8 | 6.3 | 20.6 | 31.2 | 5.7 | 22.9 |
Foveabox | 32.2 | 65.3 | 28.0 | 8.8 | 23.5 | 34.3 | 46.7 | 20.0 | 14.8 |
TOOD | 41.3 | 79.4 | 37.3 | 9.4 | 36.3 | 43.4 | 53.2 | 23.9 | 20.4 |
DDOD | 41.9 | 80.1 | 37.6 | 12.6 | 30.7 | 44.1 | 53.2 | 23.9 | 25.8 |
Faster R-CNN | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 48.1 | 21.9 | 16.4 |
Cascade R-CNN | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 51.2 | 26.5 | 14.7 |
Libra R-CNN | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 49.6 | 26.8 | 10.7 |
Dynamic R-CNN | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 46.6 | 16.6 | 25.9 |
Our-Fas | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 50.6 | 27.8 | 25.0 |
Our-Cas | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 52.3 | 27.3 | 10.8 |
Our-Lir | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 51.0 | 27.6 | 24.0 |
Our- Dyn | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 49.4 | 24.9 | 24.7 |
Table 5 Comparison of results with advanced detectors
模型 | AP50-95 | AP50 | AP75 | APS | APM | APL | AR100 | ARS | FPS |
---|---|---|---|---|---|---|---|---|---|
YOLOv7 | 36.4 | 73.4 | 32.1 | 14.9 | 25.9 | 38.3 | 48.3 | 22.9 | 33.1 |
YOLOv8 | 41.1 | 77.7 | 40.6 | 13.6 | 27.4 | 43.7 | 51.0 | 25.0 | 50.4 |
SSD | 18.6 | 46.5 | 12.1 | 0.8 | 6.3 | 20.6 | 31.2 | 5.7 | 22.9 |
Foveabox | 32.2 | 65.3 | 28.0 | 8.8 | 23.5 | 34.3 | 46.7 | 20.0 | 14.8 |
TOOD | 41.3 | 79.4 | 37.3 | 9.4 | 36.3 | 43.4 | 53.2 | 23.9 | 20.4 |
DDOD | 41.9 | 80.1 | 37.6 | 12.6 | 30.7 | 44.1 | 53.2 | 23.9 | 25.8 |
Faster R-CNN | 39.4 | 78.9 | 35.7 | 14.7 | 26.9 | 41.5 | 48.1 | 21.9 | 16.4 |
Cascade R-CNN | 41.5 | 79.4 | 39.3 | 18.0 | 29.5 | 43.7 | 51.2 | 26.5 | 14.7 |
Libra R-CNN | 40.5 | 80.3 | 36.4 | 18.3 | 28.4 | 42.4 | 49.6 | 26.8 | 10.7 |
Dynamic R-CNN | 38.7 | 75.1 | 36.2 | 12.8 | 29.1 | 40.7 | 46.6 | 16.6 | 25.9 |
Our-Fas | 42.9 | 82.9 | 39.9 | 18.8 | 29.4 | 44.8 | 50.6 | 27.8 | 25.0 |
Our-Cas | 43.9 | 82.4 | 43.1 | 20.2 | 34.7 | 45.8 | 52.3 | 27.3 | 10.8 |
Our-Lir | 43.0 | 83.7 | 40.5 | 18.5 | 35.7 | 44.8 | 51.0 | 27.6 | 24.0 |
Our- Dyn | 41.7 | 77.3 | 40.0 | 19.4 | 35.4 | 43.3 | 49.4 | 24.9 | 24.7 |
Fig. 8 Simulation generated images in different environments ((a) Normal image; (b) Brighten image; (c) Darkened image; (d) Rain image; (e) Foggy image)
模型 | 方法 | 正常 | 暗化 | 增亮 | 有雾 | 有雨 |
---|---|---|---|---|---|---|
Faster R-CNN | Baseline | 78.9 | 65.5 | 76.8 | 78.3 | 74.0 |
Ours | 82.9 | 67.8 | 79.4 | 79.8 | 76.0 | |
Cascade R-CNN | Baseline | 79.4 | 64.2 | 76.1 | 77.3 | 73.7 |
Ours | 82.4 | 67.4 | 78.6 | 79.3 | 75.1 | |
Libra R-CNN | Baseline | 80.3 | 66.3 | 75.4 | 79.6 | 73.2 |
Ours | 83.7 | 69.2 | 79.2 | 81.6 | 76.0 | |
Dynamic R-CNN | Baseline | 75.1 | 61.0 | 70.2 | 71.5 | 69.4 |
Ours | 77.3 | 61.8 | 73.5 | 75.3 | 71.8 |
Table 6 Model detection results AP50 in different environments
模型 | 方法 | 正常 | 暗化 | 增亮 | 有雾 | 有雨 |
---|---|---|---|---|---|---|
Faster R-CNN | Baseline | 78.9 | 65.5 | 76.8 | 78.3 | 74.0 |
Ours | 82.9 | 67.8 | 79.4 | 79.8 | 76.0 | |
Cascade R-CNN | Baseline | 79.4 | 64.2 | 76.1 | 77.3 | 73.7 |
Ours | 82.4 | 67.4 | 78.6 | 79.3 | 75.1 | |
Libra R-CNN | Baseline | 80.3 | 66.3 | 75.4 | 79.6 | 73.2 |
Ours | 83.7 | 69.2 | 79.2 | 81.6 | 76.0 | |
Dynamic R-CNN | Baseline | 75.1 | 61.0 | 70.2 | 71.5 | 69.4 |
Ours | 77.3 | 61.8 | 73.5 | 75.3 | 71.8 |
[1] | 中能传媒研究院. 中国能源大数据报告(2023): 第一章能源发展综述[EB/OL]. (2023-06-20) [2024-04-06]. https://news.bjx.com.cn/html/20230620/1313822.shtml |
China Energy Media Academy. China energy big data report (2023)[EB/OL]. (2023-06-20) [2024-04-06]. https://news.bjx.com.cn/html/20230620/1313822.shtml (in Chinese). | |
[2] | 李德海, 李丹丹. 基于视觉的输电线路自动监测技术综述[J]. 黑龙江电力, 2019, 41(6): 559-564. |
LI D H, LI D D. Overview of vision-based transmission line automatic monitoring technology[J]. Heilongjiang Electric Power, 2019, 41(6): 559-564 (in Chinese). | |
[3] | ZHAO Z B, LIU N. The recognition and localization of insulators adopting SURF and IFS based on correlation coefficient[J]. Optik, 2014, 125(20): 6049-6052. |
[4] | 陈文师. 高压输电线路的视觉巡检方法研究[J]. 现代制造, 2017(18): 152-153. |
CHEN W S. Research on visual inspection method of high voltage transmission line[J]. Mechanical and Electrical Information, 2017(18): 152-153 (in Chinese). | |
[5] | 高文婷, 刘越. 面向移动增强现实的实时深度学习目标检测方法综述[J]. 图学学报, 2021, 42(4): 525-534. |
GAO W T, LIU Y. Review of real-time deep learning-based object detection for mobile augmented reality[J]. Journal of Graphics, 2021, 42(4): 525-534 (in Chinese). | |
[6] | 孙宗康, 饶睦敏, 曹裕灵, 等. 基于小样本不均衡数据的供水管道泄漏智能检测算法[J]. 图学学报, 2022, 43(5): 825-831. |
SUN Z K, RAO M M, CAO Y L, et al. Water supply pipeline leakage intelligent detection algorithm based on small and unbalanced data[J]. Journal of Graphics, 2022, 43(5): 825-831 (in Chinese). | |
[7] | 赵振兵, 吕雪纯, 王帆帆, 等. 基于改进YOLOx-S的输电线路上金具检测方法[J]. 无线电工程, 2023, 53(11): 2664-2672. |
ZHAO Z B, LYU X C, WANG F F, et al. Fitting detection on transmission line based on improved YOLOx-S[J]. Radio Engineering, 2023, 53(11): 2664-2672 (in Chinese). | |
[8] | 赵振兵, 吕雪纯, 苗思雨, 等. 基于共有特征评分的解耦知识蒸馏输电线路金具检测方法[EB/OL]. (2023-11-13) [2024- 04-03]. https://doi.org/10.13336/j.1003-6520.hve.20231541. |
ZHAO Z B, LÓ X C, MIAO S Y, et al. Decoupled knowledge distillation transmission line fittings inspection method based on shared feature scoring[EB/OL]. (2023-11-13)[2024-04-03]. https://doi.org/10.13336/j.1003-6520.hve.20231541 (in Chinese). | |
[9] | 张涛, 高绅, 陈万培, 等. 基于深度学习的间隔棒故障识别方法[J]. 无线电工程, 2021, 51(6): 502-506. |
ZHANG T, GAO S, CHEN W P, et al. Spacer bar fault detection based on deep learning[J]. Radio Engineering, 2021, 51(6): 502-506 (in Chinese). | |
[10] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 4700-4708. |
[11] | VIEIRA-E-SILVA A L B, DE CASTRO FELIX H, DE MENEZES CHAVES T, et al. STN PLAD: a dataset for multi-size power line assets detection in high-resolution UAV images[C]// The 34th SIBGRAPI Conference on Graphics, Patterns and Images. New York: IEEE Press, 2021: 215-222. |
[12] | 戚银城, 赵席彬, 耿劭锋, 等. 基于遮挡关系推理的输电线路图像金具检测[J]. 智能系统学报, 2022, 17(6): 1154-1162. |
QI Y C, ZHAO X B, GENG S F, et al. Fittings detection in transmission line images with occlusion relation inference[J]. CAAI Transactions on Intelligent Systems, 2022, 17(6): 1154-1162 (in Chinese). | |
[13] | YANG C H Y, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13658-13667. |
[14] | GRAHAM B, VAN DER MAATEN L. Submanifold sparse convolutional networks[EB/OL]. [2024-05-15]. https://arxiv.org/abs/1706.01307. |
[15] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[16] | HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3588-3597. |
[17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[18] | PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[EB/OL]. [2024-05-15]. https://dblp.uni-trier.de/db/conf/nips/nips2019.html#PaszkeGMLBCKLGA19. |
[19] | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. [2024-05-15]. https://arxiv.org/abs/1906.07155. |
[20] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-Time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[21] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[22] | PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 821-830. |
[23] | ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 260-275. |
[24] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// The 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
[25] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[26] | JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLO (Version 8.0.0)[EB/OL]. [2024-07-06]. https://github.com/ultralytics/ultralytics. |
[27] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[28] | KONG T, SUN F C, LIU H P, et al. FoveaBox: beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. |
[29] | FENG C, ZHONG Y, GAO Y, et al. Tood: Task-aligned one-stage object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. IEEE Computer Society, 2021: 3490-3499. |
[30] | CHEN Z H, YANG C H Y, LI Q F, et al. Disentangle your dense object detector[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4939-4948. |
[1] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
[2] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
[3] | ZHANG Tiansheng, ZHU Minfeng, REN Yiwen, WANG Chenhan, ZHANG Lidong, ZHANG Wei, CHEN Wei. BPA-SAM: box prompt augmented SAM for traditional Chinese realistic painting [J]. Journal of Graphics, 2025, 46(2): 322-331. |
[4] | SUN Heyi, LI Yixiao, TIAN Xi, ZHANG Songhai. Image to 3D vase generation technology combining procedural content generation and diffusion models [J]. Journal of Graphics, 2025, 46(2): 332-344. |
[5] | CHEN Ruiqi, LIU Xiaofei, WAN Feng, HOU Peng, SHEN Jinyi. Simulation and prediction method of satellite solar wing deployment test driven by digital twin [J]. Journal of Graphics, 2025, 46(2): 449-458. |
[6] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
[7] | WANG Yan, ZHANG Muyu, LIU Xiuzhen. Visual interactive meaning evaluation method of movie posters based on deep learning [J]. Journal of Graphics, 2025, 46(1): 221-232. |
[8] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[9] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[10] | SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning [J]. Journal of Graphics, 2025, 46(1): 81-93. |
[11] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[12] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[13] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[14] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[15] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||