Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 449-458.DOI: 10.11996/JG.j.2095-302X.2025020449
• Digital Design and Manufacture • Previous Articles Next Articles
CHEN Ruiqi(), LIU Xiaofei, WAN Feng, HOU Peng, SHEN Jinyi
Received:
2024-08-01
Accepted:
2024-11-20
Online:
2025-04-30
Published:
2025-04-24
About author:
First author contact:CHEN Ruiqi (1994-), engineer, master. His main research interest covers digital manufacturing. E-mail:282299012@qq.com
Supported by:
CLC Number:
CHEN Ruiqi, LIU Xiaofei, WAN Feng, HOU Peng, SHEN Jinyi. Simulation and prediction method of satellite solar wing deployment test driven by digital twin[J]. Journal of Graphics, 2025, 46(2): 449-458.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020449
输入参数 | 输出参数 | |||
---|---|---|---|---|
参数 | 单位 | 范围 | 参数 | 单位 |
星体姿态(X, Y, Z) | mm | 0~100 | 第一(根部)铰链角度 | ° |
星体姿态(RX, RY, RZ) | ° | 0~5 | 第二(板间)铰链角度 | ° |
水平度 | mm | 0~1 | 关键点位移(X, Y, Z) | mm |
平行度 | mm | 0~1 | ||
拼缝高低差 | mm | 0~0.5 | 关键点速度(X, Y, Z) | mm/s |
摩擦系数 | 0.001~0.010 | |||
卸载力 | % | 50~100 | 关键点加速度(X, Y, Z) | mm/s2 |
支撑高度 | mm | 100~300 | ||
风阻 | N | 0~1 | 展开时间 | s |
…… |
Table 1 Input and output parameter table for simulating the ground deployment test process of solar wings
输入参数 | 输出参数 | |||
---|---|---|---|---|
参数 | 单位 | 范围 | 参数 | 单位 |
星体姿态(X, Y, Z) | mm | 0~100 | 第一(根部)铰链角度 | ° |
星体姿态(RX, RY, RZ) | ° | 0~5 | 第二(板间)铰链角度 | ° |
水平度 | mm | 0~1 | 关键点位移(X, Y, Z) | mm |
平行度 | mm | 0~1 | ||
拼缝高低差 | mm | 0~0.5 | 关键点速度(X, Y, Z) | mm/s |
摩擦系数 | 0.001~0.010 | |||
卸载力 | % | 50~100 | 关键点加速度(X, Y, Z) | mm/s2 |
支撑高度 | mm | 100~300 | ||
风阻 | N | 0~1 | 展开时间 | s |
…… |
仿真数据 | 实测数据 | ||||
---|---|---|---|---|---|
名称 | 参数 | 单位 | 名称 | 参数 | 单位 |
第一铰链角度 | HINGE_FIRST_SANGLE | ° | 第i点位移X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm |
第二铰链角度 | HINGE_SECOND_SANGLE | ° | 第i点速度X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm/s |
第i点位移X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm | 第i点加速度X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm/s2 |
第i点速度X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm/s | 实测展开时间 | RDEPLOYMENT_TIME | s |
第i点加速度X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm/s2 | …… | ||
仿真展开时间 | SDEPLOYMENT_TIME | s | |||
…… |
Table 2 Structure of institution deployment process prediction dataset
仿真数据 | 实测数据 | ||||
---|---|---|---|---|---|
名称 | 参数 | 单位 | 名称 | 参数 | 单位 |
第一铰链角度 | HINGE_FIRST_SANGLE | ° | 第i点位移X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm |
第二铰链角度 | HINGE_SECOND_SANGLE | ° | 第i点速度X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm/s |
第i点位移X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm | 第i点加速度X,Y,Z轴分量 | RPi_X_S, RPi_Y_S, RPi_Z_S | mm/s2 |
第i点速度X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm/s | 实测展开时间 | RDEPLOYMENT_TIME | s |
第i点加速度X,Y,Z轴分量 | SPi_X_S, SPi_Y_S, SPi_Z_S | mm/s2 | …… | ||
仿真展开时间 | SDEPLOYMENT_TIME | s | |||
…… |
Fig. 9 Satellite solar wing deployment test unit digital twin model ((a) Solar wing twin model; (b) Twin model of tooling; (c) Workshop environment modeling)
Fig. 11 Preprocessing of input parameters for predicting the expansion process of solar wings ((a) Expand time feature analysis; (b) Analysis of the characteristics of the first hinge (root); (c) Characteristic analysis of the second hinge (between plates))
Fig. 12 Comparison of errors in solar wing deployment time prediction models ((a) LSTM neural network (prediction error 2.076 7); (b) BP neural network (prediction error 1.230 9); (c) RBF neural network (prediction error 1.641 7))
序号 | 变化参数名称 | 数值 | 展开锁定情况 | 备注 |
---|---|---|---|---|
1 | 星体姿态 | 水平0.5 mm,俯仰0.5 mm | 告警异常 | 采用控制变量法, 除变化参数外均为最优试验参数 |
2 | 气浮平台姿态 | 平面度0.6 mm,水平度0.6 mm | 告警异常 | |
3 | 气压、气膜厚度(气浮摩擦阻力) | 气压0.5 MPa,气膜厚度0.04 mm | 告警异常 | |
4 | 卸载力 | 各点均70% | 告警异常 |
Table 3 Key parameter boundary test parameters table for solar wing deployment
序号 | 变化参数名称 | 数值 | 展开锁定情况 | 备注 |
---|---|---|---|---|
1 | 星体姿态 | 水平0.5 mm,俯仰0.5 mm | 告警异常 | 采用控制变量法, 除变化参数外均为最优试验参数 |
2 | 气浮平台姿态 | 平面度0.6 mm,水平度0.6 mm | 告警异常 | |
3 | 气压、气膜厚度(气浮摩擦阻力) | 气压0.5 MPa,气膜厚度0.04 mm | 告警异常 | |
4 | 卸载力 | 各点均70% | 告警异常 |
[1] | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768. |
ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753-768 (in Chinese). | |
[2] | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese). | |
[3] | TAO F, ZHANG M. Digital twin shop-floor: a new shopfloor paradigm towards smart manufacturing[EB/OL]. [2024-07-01]. https://www.semanticscholar.org/paper/Digital-Twin-Shop-Floor%3A-A-New-Shop-Floor-Paradigm-Tao-Zhang/8b77cd55a39c4c8c87f8a6a6572078e247630829. |
[4] | TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 3563-3576. |
[5] | 苗田, 张旭, 熊辉, 等. 数字孪生技术在产品生命周期中的应用与展望[J]. 计算机集成制造系统, 2019, 25(6): 1546-1558. |
MIAO T, ZHANG X, XIONG H, et al. Applications and expectation of digital twin in product lifecycle[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1546-1558 (in Chinese). | |
[6] | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18 (in Chinese). | |
[7] | 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. |
TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9 (in Chinese). | |
[8] | PERNO M, HVAM L. Developing a framework for scoping digital twins in the process manufacturing industry[EB/OL]. [2023-07-03]. http://www.xueshufan.com/publication/3112101679. |
[9] |
黄文恺, 梁智洪, 王明华, 等. 数字孪生在航空航天结构设计、制造和运维中的应用与展望[J]. 图学学报, 2024, 45(2): 241-249.
DOI |
HUANG W K, LIANG Z H, WANG M H, et al. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249 (in Chinese).
DOI |
|
[10] |
庞博, 杨辉, 于荣荣, 等. 基于数字孪生技术的航天器机构生产线平衡研究[J]. 图学学报, 2024, 45(2): 332-338.
DOI |
PANG B, YANG H, YU R R, et al. Research on spacecraft mechanisms production line balance based on digital twin technology[J]. Journal of Graphics, 2024, 45(2): 332-338 (in Chinese).
DOI |
|
[11] | 褚伊哲, 周志峰, 陈国铃, 等. 试验检测中心数字孪生系统的开发与实践[J]. 制造技术与机床, 2024(8): 169-174. |
CHU Y Z, ZHOU Z F, CHEN G L, et al. Development and practice of digital twin system for experimental center[J]. Manufacturing Technology & Machine Tool, 2024(8): 169-174 (in Chinese). | |
[12] | 谢志勇, 朱娟芬, 赵颖, 等. 基于数字孪生技术的工业机器人故障预测方法[J]. 机电工程技术, 2023, 52(8): 134-137. |
XIE Z Y, ZHU J F, ZHAO Y, et al. Fault prediction method for industrial robots based on digital twin technology[J]. Mechanical Electrical Engineering Technology, 2023, 52(8): 134-137 (in Chinese). | |
[13] | 王建军, 向永清, 何正文. 基于数字孪生的航天器系统工程模型与实现[J]. 计算机集成制造系统, 2019, 25(6): 1348-1360. |
WANG J J, XIANG Y Q, HE Z W. Models and implementation of digital twin based spacecraft system engineering[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1348-1360 (in Chinese). | |
[14] | 郭具涛, 洪海波, 钟珂珂, 等. 基于数字孪生的航天制造车间生产管控方法[J]. 中国机械工程, 2020, 31(7): 808-814. |
GUO J T, HONG H B, ZHONG K K, et al. Production management and control method of aerospace manufacturing workshops based on digital twin[J]. China Mechanical Engineering, 2020, 31(7): 808-814 (in Chinese). | |
[15] | 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星: 概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26(3): 565-588. |
LIU W R, TAO F, CHENG J F, et al. Digital twin satellite: concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 565-588 (in Chinese). | |
[16] |
TAO F, ZHANG H, ZHANG C. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169-177.
DOI PMID |
[1] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
[2] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
[3] | ZHANG Tiansheng, ZHU Minfeng, REN Yiwen, WANG Chenhan, ZHANG Lidong, ZHANG Wei, CHEN Wei. BPA-SAM: box prompt augmented SAM for traditional Chinese realistic painting [J]. Journal of Graphics, 2025, 46(2): 322-331. |
[4] | SUN Heyi, LI Yixiao, TIAN Xi, ZHANG Songhai. Image to 3D vase generation technology combining procedural content generation and diffusion models [J]. Journal of Graphics, 2025, 46(2): 332-344. |
[5] | WANG Yan, ZHANG Muyu, LIU Xiuzhen. Visual interactive meaning evaluation method of movie posters based on deep learning [J]. Journal of Graphics, 2025, 46(1): 221-232. |
[6] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[7] | XU Jinglin, PENG Yang, OU Jinwu, TAN Junjie, SHU Jiangpeng, YU Fangqiang. An intelligent maintenance system for public buildings integrating digital twin and large language model [J]. Journal of Graphics, 2024, 45(6): 1200-1206. |
[8] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[9] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[10] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[11] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[12] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[13] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[14] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[15] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||