图学学报 ›› 2024, Vol. 45 ›› Issue (2): 388-398.DOI: 10.11996/JG.j.2095-302X.2024020388
收稿日期:
2023-10-01
修回日期:
2023-12-11
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
许可(1989-),男,副教授,博士。主要研究方向为数字化制造与智能制造。E-mail:nuaa_xk@nuaa.edu.cn
作者简介:
王士心(1999-),男,硕士研究生。主要研究方向为复合材料制造工艺整体优化。E-mail:wsx051730404@nuaa.edu.cn
基金资助:
Received:
2023-10-01
Revised:
2023-12-11
Online:
2024-04-30
Published:
2024-04-30
Contact:
XU Ke (1989-), associate professor, Ph.D. His main research interests cover digital and intelligent manufacturing. E-mail:nuaa_xk@nuaa.edu.cn
About author:
WANG Shixin (1999-), master student. His main research interests cover manufacturing process optimization of composite materials. E-mail:wsx051730404@nuaa.edu.cn
Supported by:
摘要:
碳纤维增强树脂基复合材料(CFRP)具有优异的综合性能,已成为航空航天高端装备减重增效的优选材料。固化是实现复材构件成形承载的关键工艺环节,固化过程中的构件温度场直接决定了构件的成形质量与力学性能,如何精确、动态的反求复材构件表面的热源分布,是实现温度场精准调控的基础。然而实际的固化工艺需在构件表面贴附透气毡、真空袋等辅助材料,难以直接监测构件表面的温度场,仅能引入若干个光纤测温点获取稀疏的温度样本,给热源分布这一高维标量场的重构带来挑战。为此,提出一种基于高斯混合分布模型(GMM)的固化过程热源分布动态估计方法,引入高斯模糊与面内热扩散等效性这一物理先验,建立了基于高斯模糊的温度场演变模型,进而利用GMM中的多个高斯分布表征固化过程中的热源分布,将高维场重构难题转化为若干高斯分布参数的优化求解问题。通过仿真实验验证了本文方法的可行性与有效性,能够实现固化过程中热源分布的精确动态估计。
中图分类号:
王士心, 许可. 稀疏监测样本下的复合材料固化过程热源分布动态估计[J]. 图学学报, 2024, 45(2): 388-398.
WANG Shixin, XU Ke. Dynamic estimation of heat source distribution during solidification of composite materials under sparse monitoring samples[J]. Journal of Graphics, 2024, 45(2): 388-398.
图4 常见的插值方法((a)最近邻点插值;(b)线性插值;(c)自然邻点插值;(d)双调和样条插值)
Fig. 4 Common interpolation methods ((a) Nearest neighbor interpolation; (b) Linear interpolation; (c) Natural neighbor interpolation; (d) Biharmonic spline interpolation)
图5 GMM重构算法有效性验证((a)原始温差数据;(b)拟合GMM曲面;(c)采样点在拟合曲面对应值)
Fig. 5 Validation of GMM reconstruction algorithm ((a) Original temperature difference data; (b) Fitting GMM surfaces; (c) The corresponding value of the sampling point on the fitted surface)
图8 基于COMSOL的仿真验证及预设热源分布((a)仿真加热装置;(b)边界热源灰度图像;(c)仿真热源分布;(d) CFRP表面温度场)
Fig. 8 A Simulation verification and preset heat source distribution based on COMSOL ((a) Simulation heating device; (b) Grayscale image of boundary heat source; (c) Simulated heat source distribution; (d) CFRP surface temperature field)
图10 热源分布重构((a) 1 000 s时的温度场分布;(b)预测的第1 100 s时的温度场;(c)通过温差拟合的曲面;(d)最终重构的热源分布)
Fig. 10 Reconstruction of heat source distribution ((a) Temperature field distribution at 1 000 s; (b) Temperature field at 1 100 s as predicted; (c) Surfaces fitted by temperature difference; (d) Heat source distribution for final reconstruction)
图14 重建结果对比((a)线性插值方法;(b)双调和样条插值方法;(c) ART迭代重构方法;(d)基于GMM的重构方法)
Fig. 14 Comparison of reconstruction results ((a) Linear interpolation; (b) Biharmonic spline interpolation; (c) ART iterative reconstruction; (d) GMM-based reconstruction)
重建方法 | SSIM | PSNR | Corr2 |
---|---|---|---|
线性插值 | 0.34 | 10.94 | 0.49 |
双调和样条插值 | 0.36 | 10.67 | 0.72 |
ART算法[ | 0.32 | 9.23 | 0.59 |
本文算法 | 0.43 | 15.18 | 0.85 |
表1 重建结果误差指标对比
Table 1 Comparison of reconstruction error
重建方法 | SSIM | PSNR | Corr2 |
---|---|---|---|
线性插值 | 0.34 | 10.94 | 0.49 |
双调和样条插值 | 0.36 | 10.67 | 0.72 |
ART算法[ | 0.32 | 9.23 | 0.59 |
本文算法 | 0.43 | 15.18 | 0.85 |
图16 Case2中的热源分布重构结果((a)预设热源分布;(b)重构热源分布;(c)二者残差)
Fig. 16 Reconstruction results of heat source distribution in Case2 ((a) Preset heat source distribution; (b) Reconstructed heat source distribution; (c) Residual)
图17 Case3中的热源分布重构结果((a)预设热源分布;(b)重构热源分布;(c)二者残差)
Fig. 17 Reconstruction results of heat source distribution in Case3 ((a) Preset heat source distribution; (b) Reconstructed heat source distribution; (c) Residual)
图18 本文方法有效性验证((a)重构热源分布;(b)预测800 s时的温度场;(c) COMSOL仿真800 s的温度场)
Fig. 18 The effectiveness of this method is verified ((a) Reconstruction of heat source distribution; (b) Prediction of the temperature field at 800 s; (c) COMSOL simulation of 800 s temperature field)
[1] |
ALAM P, MAMALIS D, ROBERT C, et al. The fatigue of carbon fibre reinforced plastics-a review[J]. Composites Part B: Engineering, 2019, 166: 555-579.
DOI URL |
[2] | 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7): 1327-1338. |
XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1327-1338 (in Chinese). | |
[3] | 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011, 28(2): 7-13. |
HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites, 2011, 28(2): 7-13 (in Chinese). | |
[4] |
LOOS A C, SPRINGER G S. Curing of epoxy matrix composites[J]. Journal of Composite Materials, 1983, 17(2): 135-169.
DOI URL |
[5] |
ABLIZ D, DUAN Y G, STEUERNAGEL L, et al. Curing methods for advanced polymer composites-a review[J]. Polymers and Polymer Composites, 2013, 21(6): 341-348.
DOI URL |
[6] |
KIM M, SUNG D H, KONG K, et al. Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites[J]. Composites Part B: Engineering, 2016, 90: 37-44.
DOI URL |
[7] |
LI N Y, LI Y G, JELONNEK J, et al. A new process control method for microwave curing of carbon fibre reinforced composites in aerospace applications[J]. Composites Part B: Engineering, 2017, 122: 61-70.
DOI URL |
[8] |
CHEKANOV Y A, KOROTKOV V N, ROZENBERG B A, et al. Cure shrinkage defects in epoxy resins[J]. Polymer, 1995, 36(10): 2013-2017.
DOI URL |
[9] |
JINNO M, SAKAI S, OSAKA K, et al. Smart autoclave processing of thermoset resin matrix composites based on temperature and internal strain monitoring[J]. Advanced Composite Materials, 2003, 12(1): 57-72.
DOI URL |
[10] |
HSIAO K T, LITTLE R, RESTREPO O, et al. A study of direct cure kinetics characterization during liquid composite molding[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 925-933.
DOI URL |
[11] |
NASH C, KARVE P, ADAMS D, et al. Real-time cure monitoring of fiber-reinforced polymer composites using infrared thermography and recursive Bayesian filtering[J]. Composites Part B: Engineering, 2020, 198: 108241.
DOI URL |
[12] |
HADDAD H, GUESSASMA M, FORTIN J. Heat transfer by conduction using DEM-FEM coupling method[J]. Computational Materials Science, 2014, 81: 339-347.
DOI URL |
[13] |
TAMADDON-JAHROMI H R, CHAKSHU N K, SAZONOV I, et al. Data-driven inverse modelling through neural network (deep learning) and computational heat transfer[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113217.
DOI URL |
[14] |
HE Z L, NI F T, WANG W G, et al. A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials[J]. Materials Today Communications, 2021, 28: 102719.
DOI URL |
[15] |
ZOBEIRY N, HUMFELD K D. A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104232.
DOI URL |
[16] |
WANG M Y, HU W F, JIANG Y F, et al. Internal temperature prediction of ternary polymer lithium-ion battery pack based on CNN and virtual thermal sensor technology[J]. International Journal of Energy Research, 2021, 45(9): 13681-13691.
DOI URL |
[17] |
张立峰, 李晶. 基于级联密集残差网络的温度场高分辨率重建[J]. 图学学报, 2023, 44(2): 216-224.
DOI |
ZHANG L F, LI J. High resolution reconstruction of temperature field based on cascaded dense residual network[J]. Journal of Graphics, 2023, 44(2): 216-224 (in Chinese). | |
[18] |
BOURGEOIS L. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation[J]. Inverse Problems, 2005, 21(3): 1087-1104.
DOI URL |
[19] |
HÀO D N, LESNIC D. The Cauchy problem for Laplace’s equation via the conjugate gradient method[J]. IMA Journal of Applied Mathematics, 2000, 65(2): 199-217.
DOI URL |
[20] | ANG D D, NGHIA N H, TAM N C. Regularized solutions of a Cauchy problem for the Laplace equation in an irregular layer: a three-dimensional model[J]. Acta Math Vietnam, 1998, 23(1): 65-74. |
[21] |
LI M, XIONG X T. On a fractional backward heat conduction problem: application to deblurring[J]. Computers & Mathematics With Applications, 2012, 64(8): 2594-2602.
DOI URL |
[22] | 程炜, 侯长顺, 傅初黎. 反向热传导问题的一种新的正则化方法[J]. 数学的实践与认识, 2011, 41(4): 164-170. |
CHENG W, HOU C S, FU C L. A new regularization method for a backward heat conduction problem[J]. Mathematics in Practice and Theory, 2011, 41(4): 164-170 (in Chinese). | |
[23] | 侯佳琪, 熊向团. 二维时间反向热传导问题的正则化方法及误差估计[J]. 四川师范大学学报: 自然科学版, 2023, 46(4): 497-502. |
HOU J Q, XIONG X T. The regularization methods for solving the time-inverse heat conduction problems in two dimensions and error estimation[J]. Journal of Sichuan Normal University: Natural Science, 2023, 46(4): 497-502 (in Chinese). | |
[24] | 李地科, 刘忠信, 邱璐, 等. 基于迁移学习和物理约束的温度场重构方法[J]. 工程热物理学报, 2023, 44(4): 1088-1095. |
LI D K, LIU Z X, QIU L, et al. Transfer learning and physics-informed neural network for temperature field reconstruction[J]. Journal of Engineering Thermophysics, 2023, 44(4): 1088-1095 (in Chinese). | |
[25] |
FISH V, AKIYAMA K, BOUMAN K, et al. Observing—and imaging—active galactic nuclei with the event horizon telescope[J]. Galaxies, 2016, 4(4): 54.
DOI URL |
[26] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
DOI URL |
[27] |
ZHANG S P, SHEN G Q, AN L S, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography[J]. Applied Thermal Engineering, 2015, 75: 958-966.
DOI URL |
[1] | 路龙飞, 王峻峰, 赵世闻, 李广, 丁鑫涛. 基于力位感知技能学习的轴孔柔顺装配方法[J]. 图学学报, 2024, 45(2): 250-258. |
[2] | 朱伊明, 张玉珠, 陈斌, 彭晓东, 高辰, 刘宇, 唐文林, 强丽娥, 徐鹏, 罗子人. 基于MBSE的空间引力波探测系统指标管理及其探测灵敏度分析[J]. 图学学报, 2024, 45(2): 259-267. |
[3] | 粟华, 方施喆, 田昆效, 龚春林. 基于MBSE的地空导弹总体方案设计[J]. 图学学报, 2024, 45(2): 268-276. |
[4] | 张然, 李源, 王昊, 孙照强, 赵媛媛. 场景导向的雷达系统模型设计与仿真方法研究[J]. 图学学报, 2024, 45(2): 284-291. |
[5] | 贺文虎, 刘伟, 王酉龙, 蔡珲. 航空动力装备顶层功能分解分配建模方法研究[J]. 图学学报, 2024, 45(2): 292-299. |
[6] | 何柳, 安然, 刘姝妍, 李润岐, 陶剑, 曾照洋. 基于知识图谱的航空多模态数据组织与知识发现技术研究[J]. 图学学报, 2024, 45(2): 300-307. |
[7] | 汪澔, 武仲芝, 唐剑. 面向民用飞机需求验证的自动化测试技术研究[J]. 图学学报, 2024, 45(2): 308-316. |
[8] | 黄庭莉, 王保民, 王海芳, 赵家豪, 周璐婕, 官琳. 地铁列车IPIS系统设计建模方法[J]. 图学学报, 2024, 45(2): 317-324. |
[9] | 庞博, 杨辉, 于荣荣, 张浩月, 罗强. 基于数字孪生技术的航天器机构生产线平衡研究[J]. 图学学报, 2024, 45(2): 332-338. |
[10] | 王海芳, 张雷, 刘慧军, 卢益明, 孙铭桧. 基于DoDAF的动车组MBSE的研制方法[J]. 图学学报, 2024, 45(2): 339-346. |
[11] | 王海芳, 张雷, 王鑫, 孙铭桧, 薛莲敏. 基于正向设计的动车组牵引系统建模与实现[J]. 图学学报, 2024, 45(2): 347-354. |
[12] | 马彦丽, 张继忠, 郝冀斌, 梁巍, 李秀春. 基于MBSE的柴油机系统设计建模方法[J]. 图学学报, 2024, 45(2): 355-362. |
[13] | 卢元杰, 陈星伊, 苏大林, 孙唯. 面向系统工程的无人机自主定位系统研究[J]. 图学学报, 2024, 45(2): 363-368. |
[14] | 刘蒙, 耿施展, 丁国辉. 基于自定义规则的SysML用例自动生成方法研究[J]. 图学学报, 2024, 45(2): 374-382. |
[15] | 张一鸣, 刘金锋, 陈亚杰, 瞿鹏飞, 景旭文, 刘晓军. 零件加工隐性工艺知识获取方法研究[J]. 图学学报, 2024, 45(2): 399-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||