欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1200-1206.DOI: 10.11996/JG.j.2095-302X.2024061200

• “大模型与图学技术及应用”专题 • 上一篇    下一篇

融合大模型和数字孪生的公共建筑智慧运维系统

许璟琳1,2(), 彭阳2, 欧金武2, 谈骏杰2, 舒江鹏1(), 余芳强3   

  1. 1.浙江大学工程师学院,浙江 杭州 310015
    2.上海建工四建集团有限公司,上海 201103
    3.上海建工集团股份有限公司,上海 200080
  • 收稿日期:2024-07-16 接受日期:2024-10-22 出版日期:2024-12-31 发布日期:2024-12-24
  • 通讯作者:舒江鹏(1987-),男,研究员,博士。主要研究方向为智能建造与检测。E-mail:jpeshu@zju.edu.cn
  • 第一作者:许璟琳(1989-),女,博士研究生。主要研究方向为工程数字化、数字孪生和大模型应用。E-mail:jinglin.xu@qq.com
  • 基金资助:
    上海市国资委能级提升项目(2022008);上海市科技创新行动计划项目(22dz1207102)

An intelligent maintenance system for public buildings integrating digital twin and large language model

XU Jinglin1,2(), PENG Yang2, OU Jinwu2, TAN Junjie2, SHU Jiangpeng1(), YU Fangqiang3   

  1. 1. Polytechnic Institute, Zhejiang University, Hangzhou Zhejiang 310015, China
    2. Shanghai Construction No.4 (Group) Co. LTD, Shanghai 201103, China
    3. Shanghai Construction Group Co. LTD, Shanghai 200080, China
  • Received:2024-07-16 Accepted:2024-10-22 Published:2024-12-31 Online:2024-12-24
  • Contact: SHU Jiangpeng (1987-), researcher, Ph.D. His main research interests cover intelligent construction and testing, etc. E-mail:jpeshu@zju.edu.cn
  • First author:XU Jingnlin (1989-), PhD candidate. Her main research interests cover engineering digitization, digital twins, and large model applications. E-mail:jinglin.xu@qq.com
  • Supported by:
    Shanghai State-Owned Assets Supervision and Administration Commission Level Promotion Project(2022008);Shanghai Science and Technology Innovation Action Plan Project(22dz1207102)

摘要:

为解决基于数字孪生的建筑智慧运维面临的系统操作复杂、海量建设文档信息难以查阅、复杂场景决策支持弱等问题,构建了融合大模型和数字孪生的建筑智慧运维系统,创新了基于检索增强生成的海量信息高效检索技术、基于大模型的建筑运维服务高效调用技术、基于群体智能的楼宇智能调适技术等,在3类典型运维场景进行了应用验证,表明融合大模型和数字孪生构建的公共建筑智慧运维系统,有助于提供运维个性化服务、提升用户体验、提供复杂决策支持,实现更便捷、更舒适、更安全、更绿色的公共建筑智慧运维管理。

关键词: 大语言模型, 数字孪生, 公共建筑, 智慧运维

Abstract:

To address the challenges encountered in smart building operations and maintenance based on digital twins, such as complex system operations, difficulties in accessing a vast amount of construction documentation, and limited decision support in complex scenarios, a smart building operations and maintenance system integrating large models and digital twins was constructed. Innovations include efficient retrieval technology for massive information based on Retrieval Augmented Generation, efficient invocation technology for building operations and maintenance services based on large models, and intelligent building adaptation technology based on swarm intelligence. The system was applied and verified in three typical operations and maintenance scenarios. The results demonstrated that integrating large models and digital twins in constructing a public building smart operations and maintenance system aided in providing personalized building operations and maintenance services, enhanced user experience, offered complex decision support, and enabled more convenient, comfortable, safe, and green smart operations and maintenance management for public buildings.

Key words: large language models, digital twin, public buildings, intelligent maintenance

中图分类号: