欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (4): 756-762.DOI: 10.11996/JG.j.2095-302X.2025040756

• 图像处理与计算机视觉 • 上一篇    下一篇

面向高光子通量环境的目标深度估计方法

杨佳熙1(), 于乐天1, 包骐瑞1, 毕胜2, 麻晓斗1, 杨晟琦3, 姜雨彤4, 方建儒5, 魏小鹏1, 杨鑫1()   

  1. 1.大连理工大学计算机学院社会计算与认知智能教育部重点实验室,辽宁 大连 116024
    2.大连理工大学机械工程学院,辽宁 大连 116024
    3.中国航空工业集团公司沈阳飞机设计研究所,辽宁 沈阳 110035
    4.中国北方车辆研究所先进越野系统技术全国重点实验室,北京 100072
    5.大连亚明汽车部件股份有限公司,辽宁 大连 116024
  • 收稿日期:2024-07-05 接受日期:2025-03-22 出版日期:2025-08-30 发布日期:2025-08-11
  • 通讯作者:杨鑫(1984-),男,教授,博士。主要研究方向为计算机图形学与视觉、机器学习与大数据技术、机器人技术。E-mail:xinyang@dlut.edu.cn
  • 第一作者:杨佳熙(1999-),男,硕士研究生。主要研究方向为计算机视觉。E-mail:517542583@qq.com
  • 基金资助:
    国家重点研发项目(2022ZD0210500)

Object depth estimation methods for high photon flux environments

YANG Jiaxi1(), YU Letian1, BAO Qirui1, BI Sheng2, MA Xiaodou1, Yang Shengqi3, JIANG Yutong4, FANG Jianru5, WEI Xiaopeng1, YANG Xin1()   

  1. 1. Key Laboratory of Social Computing and Cognitive Intelligence, School of Computer Science, Dalian University of Technology, Dalian Liaoning 116024, China
    2. School of Mechanical Engineering, Dalian University of Technology, Dalian Liaoning 116024, China
    3. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang Liaoning 110035, China
    4. Chinese Scholartree Ridge State Key Laboratory, China North Vehicle Research Institute, Beijing 100072, China
    5. Dalian Yaming Automotive Parts Co., Ltd., Dalian Liaoning 116024, China
  • Received:2024-07-05 Accepted:2025-03-22 Published:2025-08-30 Online:2025-08-11
  • First author:YANG Jiaxi (1999-), master student. His main research interest covers computer vision. E-mail:517542583@qq.com
  • Supported by:
    National Key Research and Development Program of China(2022ZD0210500)

摘要:

单光子雪崩二极管(SPAD)的高时间分辨率特性及高精度特性为其开辟了广泛的应用空间,尤其是在对算法性能要求日益增长的计算机视觉、计算成像等领域。SPAD能对各种常见目标进行精确度较高的深度估计,但SPAD每次探测到光子后会进入一段无法探测的猝灭期。这导致在环境中光子数量较多时,同一脉冲周期内更早到达SPAD的光子有更大概率被采集,使得最终形成的光子数量统计曲线明显向时间轴短的方向偏移,且偏移程度随着光子通量(即单位时间内探测光子数量)的增加而扩大。该现象被称为堆积效应(Pileup effect),其降低了深度估计算法的准确性。对于这一问题,搭建了用于采集SPAD光子数据的单光子探测系统,并在几种不同光子通量下采集了一个针对SPAD深度估计任务中堆积效应进行研究的目标深度数据集。在此基础上,设计了一个将光子通量作为全局特征进行学习的深度估计网络,其融合了SPAD探测结果中的局部空间特征和全局光子通量特征,在几种存在堆积效应的光子通量下均取得了较高的深度估计性能。

关键词: 单光子雪崩二极管, 光子通量, 堆积效应, 深度估计, 自注意力机制

Abstract:

The high temporal-resolution and high-precision characteristics of single-photon avalanche diode (SPAD) have opened up a wide range of applications, especially in fields such as computer vision and computational imaging with increasing algorithmic performance demands. Accurate depth estimation can be achieved for various targets using SPAD measurements, however, every time when SPAD device detects a photon, it will enter an undetectable quenching period. When there are a large number of photons in the environment, photon arrivals are more likely to be recorded in earlier bins than later bins, resulting in an obvious histogram distortion towards the shorter temporal axis, while the degree of distortion exacerbates with the increase of photon flux (the number of photons detected per unit time). This phenomenon, known as the Pileup Effect, reduces the accuracy of depth estimation algorithms. In this paper, a SPAD-based prototype was first constructed to collect single-photon measurements under several different photon-flux settings, and a single-photon based dataset was developed to study the pileup effect for depth estimation vision tasks. Based on our dataset, a depth estimation network was then designed to learn photon-flux as global features, simultaneously integrating the local spatial features and global flux-based features from SPAD measurements. Extensive experiments demonstrated that our network significantly achieved superior depth estimation performance under several different photon-flux settings with pileup effects.

Key words: single-photon avalanche diode, photon flux, pileup effect, depth estimation, self-attention mechanism

中图分类号: