[1] |
HENDRIKX M, MEIJER S, VAN DER VELDEN J, et al. Procedural content generation for games: a survey[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2013, 9(1): 1.
|
[2] |
PEARL O, LANG I, HU Y H, et al. GeoCode: interpretable shape programs[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2212.11715.
|
[3] |
LONG X X, GUO Y C, LIN C, et al. Wonder3D: single image to 3D using cross-domain diffusion[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 9970-9980.
|
[4] |
KIM J, KOO J, YEO K, et al. SyncTweedies: a general generative framework based on synchronized diffusions[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2403.14370.
|
[5] |
SU H, HUANG Q X, MITRA N J, et al. Estimating image depth using shape collections[J]. ACM Transactions on Graphics, 2014, 33(4): 37.
|
[6] |
KAR A, TULSIANI S, CARREIRA J, et al. Category-specific object reconstruction from a single image[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1966-1974.
|
[7] |
HUANG Q X, WANG H, KOLTUN V. Single-view reconstruction via joint analysis of image and shape collections[J]. ACM Transactions on Graphics, 2015, 34(4): 87.
|
[8] |
SUN X Y, WU J J, ZHANG X M, et al. Pix3D: dataset and methods for single-image 3D shape modeling[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 2974-2983.
|
[9] |
CHOY C B, XU D F, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 628-644.
|
[10] |
XIE H Z, YAO H X, SUN X S, et al. Pix2Vox: context-aware 3D reconstruction from single and multi-view images[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2690-2698.
|
[11] |
LIU R S, WU R D, VAN HOORICK B, et al. Zero-1-to-3: zero-shot one image to 3D object[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 9298-9309.
|
[12] |
SHI R X, CHEN H S, ZHANG Z Y, et al. Zero123++:a single image to consistent multi-view diffusion base model[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2310.15110.
|
[13] |
LIN Y K, HAN H N, GONG C Q, et al. Consistent123: one image to highly consistent 3D asset using case-aware diffusion priors[C]// The 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 6715-6724.
|
[14] |
CHEN H S, SHI R X, LIU Y L, et al. Generic 3D diffusion adapter using controlled multi-view editing[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2403.12032.
|
[15] |
VOLETI V, YAO C H, BOSS M, et al. SV3D: novel multi-view synthesis and 3D generation from a single image using latent video diffusion[C]// The 18th European Conference on Computer Vision. Cham: Springer, 2025: 439-457.
|
[16] |
BEKINS D, ALIAGA D G. Build-by-number: rearranging the real world to visualize novel architectural spaces[C]// 2005 VIS 05. IEEE Visualization. New York: IEEE Press, 2005: 143-150.
|
[17] |
MÜLLER P, ZENG G, WONKA P, et al. Image-based procedural modeling of facades[J]. ACM Transactions on Graphics, 2007, 26(3): 85-es.
|
[18] |
ZHOU Y C, QI H Z, ZHAI Y X, et al. Learning to reconstruct 3D Manhattan wireframes from a single image[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 7698-7707.
|
[19] |
LI C J, PAN H, BOUSSEAU A, et al. Sketch2CAD: sequential CAD modeling by sketching in context[J]. ACM Transactions on Graphics (TOG), 2020, 39(6): 164.
|
[20] |
LI C J, PAN H, BOUSSEAU A, et al. Free2CAD: parsing freehand drawings into CAD commands[J]. ACM Transactions on Graphics, 2022, 41(4): 93.
|
[21] |
YU X, DAI P, LI W B, et al. Texture generation on 3D meshes with point-UV diffusion[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 4206-4216.
|
[22] |
ZENG X F, CHEN X, QI Z Q, et al. Paint3D: paint anything 3D with lighting-less texture diffusion models[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2312.13913.
|
[23] |
RICHARDSON E, METZER G, ALALUF Y, et al. TEXTure: text-guided texturing of 3D shapes[C]// 2023 ACM SIGGRAPH Conference Proceedings. New York: ACM, 2023: 54.
|
[24] |
CHEN D Z, SIDDIQUI Y, LEE H Y, et al. Text2Tex: text-driven texture synthesis via diffusion models[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 18558-18568.
|
[25] |
TANG J X, LU R J, CHEN X K, et al. InTeX: interactive text-to-texture synthesis via unified depth-aware inpainting[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2403.11878.
|
[26] |
SHI Y C, WANG P, YE J L, et al. MVDream:multi-view diffusion for 3D generation[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2308.16512.
|
[27] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778.
|
[28] |
BHAT S F, BIRKL R, WOFK D, et al. ZoeDepth: zero-shot transfer by combining relative and metric depth[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2302.12288.
|
[29] |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 574.
|
[30] |
SONG J, MENG C L, ERMON S. Denoising diffusion implicit models[EB/OL]. [2024-06-18]. https://arxiv.org/abs/2010.02502.
|
[31] |
LUGMAYR A, DANELLJAN M, ROMERO A, et al. Repaint: inpainting using denoising diffusion probabilistic models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11461-11471.
|
[32] |
AVRAHAMI O, FRIED O, LISCHINSKI D. Blended latent diffusion[J]. ACM Transactions on Graphics, 2023, 42(4): 149.
|
[33] |
LIU Y X, XIE M S, LIU H Y, et al. Text-guided texturing by synchronized multi-view diffusion[C]// 2024 SIGGRAPH Asia Conference Papers. New York: ACM, 2024: 60.
|