图学学报 ›› 2025, Vol. 46 ›› Issue (4): 793-806.DOI: 10.11996/JG.j.2095-302X.2025040793
杜欣1,2(), 任洋甫1,2,3(
), 胥森哲4, 王巨宏5, 郑宇飞5, 张松海1,2,3
收稿日期:
2024-10-05
修回日期:
2025-02-06
出版日期:
2025-08-30
发布日期:
2025-08-11
通讯作者:
任洋甫(1988-),男,讲师,博士研究生。主要研究方向为计算机图形学与虚拟现实。E-mail:ryf21@mails.tsinghua.edu.cn第一作者:
杜欣(2000-),女,硕士研究生。主要研究方向为虚拟现实。E-mail:du_xin2024@163.com
基金资助:
DU Xin1,2(), REN Yangfu1,2,3(
), XU Senzhe4, WANG Juhong5, ZHENG Yufei5, ZHANG Songhai1,2,3
Received:
2024-10-05
Revised:
2025-02-06
Published:
2025-08-30
Online:
2025-08-11
First author:
DU Xin (2000-), master student. Her main research interest covers virtual reality. E-mail:du_xin2024@163.com
Supported by:
摘要:
虚拟现实(VR)技术的不断发展为人们提供了沉浸式的体验,在虚拟环境(VE)中如何优化用户的感知和行走效率仍是一个亟需探讨的问题。基于此,通过用户实验探究了用户对VE中尺度变化的缩放增益感知阈值、用户对于场景缩小极限的接受度以及对场景缩放和平移增益叠加效应的接受度以优化VE的交互体验。首先,通过设置不同缩放增益下的虚拟场景让被试者执行目标跟随任务,收集并分析了3种场景下的被试者感知数据,发现被试者对VE尺度变化的缩放增益感知阈值存在一定的范围,虚拟场景的尺寸和环境中物体的密度等场景特性均显著影响被试者的缩放增益感知阈值。不同场景中,被试者对场景缩放的敏感度有显著差异,被试者的感知很大程度上依赖于场景本身的特性,虚拟场景的尺寸越小,环境内物体密度越高,则被试者的缩放增益感知阈值范围越窄。此外还通过李克特量表评估了被试者对场景极限缩小的接受度,发现过度缩小会显著降低被试者的舒适度并不利于被试者体验。实验结果表明,缩放增益与平移增益的叠加对用户感知影响较小,用户对此表现出低不适感和高接受度。
中图分类号:
杜欣, 任洋甫, 胥森哲, 王巨宏, 郑宇飞, 张松海. 虚拟现实重定向行走中的场景缩放增益研究[J]. 图学学报, 2025, 46(4): 793-806.
DU Xin, REN Yangfu, XU Senzhe, WANG Juhong, ZHENG Yufei, ZHANG Songhai. Investigation of scene scaling gains in redirected walking within virtual reality[J]. Journal of Graphics, 2025, 46(4): 793-806.
被试者 | 场景1 | 场景2 | 场景3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25% | PSE | 75% | 25% | PSE | 75% | 25% | PSE | 75% | ||
男 | 1 | 0.699 | 0.902 | 1.110 | 0.977 | 1.030 | 1.080 | 1.010 | 1.050 | 1.090 |
2 | 0.930 | 1.000 | 1.070 | 1.020 | 1.070 | 1.120 | 1.080 | 1.090 | 1.100 | |
3 | 0.966 | 1.150 | 1.340 | 0.909 | 0.978 | 1.050 | 0.995 | 1.070 | 1.140 | |
4 | 0.864 | 0.985 | 1.110 | 0.963 | 1.060 | 1.150 | 1.050 | 1.050 | 1.050 | |
5 | 1.150 | 1.320 | 1.500 | 0.990 | 1.050 | 1.110 | 1.010 | 1.050 | 1.090 | |
6 | 1.070 | 1.070 | 1.070 | 1.020 | 1.110 | 1.190 | 0.951 | 1.000 | 1.060 | |
7 | 0.930 | 1.000 | 1.070 | 0.943 | 1.020 | 1.100 | 1.010 | 1.050 | 1.090 | |
8 | 0.853 | 0.922 | 0.991 | 0.900 | 0.911 | 0.922 | 0.977 | 1.030 | 1.080 | |
9 | 0.795 | 0.883 | 0.971 | 1.020 | 1.070 | 1.120 | 1.020 | 1.070 | 1.120 | |
10 | 0.948 | 1.030 | 1.120 | 0.909 | 0.978 | 1.050 | 1.010 | 1.050 | 1.090 | |
女 | 1 | 0.859 | 0.950 | 1.040 | 1.180 | 1.230 | 1.280 | 1.110 | 1.150 | 1.190 |
2 | 0.878 | 0.944 | 1.010 | 1.020 | 1.020 | 1.020 | 0.977 | 0.989 | 1.000 | |
3 | 0.809 | 0.906 | 1.000 | 1.010 | 1.100 | 1.190 | 0.969 | 1.070 | 1.180 | |
4 | 0.788 | 0.800 | 0.812 | 0.890 | 0.900 | 0.910 | 0.988 | 1.000 | 1.010 | |
5 | 0.818 | 0.905 | 0.993 | 0.990 | 1.050 | 1.110 | 1.250 | 1.250 | 1.250 | |
6 | 0.681 | 0.780 | 0.878 | 0.961 | 1.030 | 1.090 | 1.000 | 1.010 | 1.020 | |
7 | 0.717 | 0.805 | 0.893 | 0.997 | 1.090 | 1.190 | 1.010 | 1.050 | 1.090 | |
8 | 1.290 | 1.460 | 1.620 | 0.842 | 0.895 | 0.949 | 0.881 | 0.891 | 0.900 | |
9 | 0.908 | 0.950 | 0.992 | 0.946 | 0.950 | 0.953 | 1.140 | 1.140 | 1.140 | |
10 | 0.694 | 0.783 | 0.871 | 0.934 | 1.040 | 1.140 | 1.100 | 1.110 | 1.120 | |
男性平均 | 0.885 | 1.020 | 1.160 | 0.953 | 1.030 | 1.110 | 1.000 | 1.050 | 1.100 | |
女性平均 | 0.775 | 0.928 | 1.080 | 0.945 | 1.040 | 1.130 | 0.989 | 1.070 | 1.150 | |
全体平均 | 0.827 | 0.977 | 1.130 | 0.949 | 1.030 | 1.120 | 0.993 | 1.060 | 1.120 |
表1 个体心理测量函数结果
Table 1 Individual psychological measurement function results
被试者 | 场景1 | 场景2 | 场景3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
25% | PSE | 75% | 25% | PSE | 75% | 25% | PSE | 75% | ||
男 | 1 | 0.699 | 0.902 | 1.110 | 0.977 | 1.030 | 1.080 | 1.010 | 1.050 | 1.090 |
2 | 0.930 | 1.000 | 1.070 | 1.020 | 1.070 | 1.120 | 1.080 | 1.090 | 1.100 | |
3 | 0.966 | 1.150 | 1.340 | 0.909 | 0.978 | 1.050 | 0.995 | 1.070 | 1.140 | |
4 | 0.864 | 0.985 | 1.110 | 0.963 | 1.060 | 1.150 | 1.050 | 1.050 | 1.050 | |
5 | 1.150 | 1.320 | 1.500 | 0.990 | 1.050 | 1.110 | 1.010 | 1.050 | 1.090 | |
6 | 1.070 | 1.070 | 1.070 | 1.020 | 1.110 | 1.190 | 0.951 | 1.000 | 1.060 | |
7 | 0.930 | 1.000 | 1.070 | 0.943 | 1.020 | 1.100 | 1.010 | 1.050 | 1.090 | |
8 | 0.853 | 0.922 | 0.991 | 0.900 | 0.911 | 0.922 | 0.977 | 1.030 | 1.080 | |
9 | 0.795 | 0.883 | 0.971 | 1.020 | 1.070 | 1.120 | 1.020 | 1.070 | 1.120 | |
10 | 0.948 | 1.030 | 1.120 | 0.909 | 0.978 | 1.050 | 1.010 | 1.050 | 1.090 | |
女 | 1 | 0.859 | 0.950 | 1.040 | 1.180 | 1.230 | 1.280 | 1.110 | 1.150 | 1.190 |
2 | 0.878 | 0.944 | 1.010 | 1.020 | 1.020 | 1.020 | 0.977 | 0.989 | 1.000 | |
3 | 0.809 | 0.906 | 1.000 | 1.010 | 1.100 | 1.190 | 0.969 | 1.070 | 1.180 | |
4 | 0.788 | 0.800 | 0.812 | 0.890 | 0.900 | 0.910 | 0.988 | 1.000 | 1.010 | |
5 | 0.818 | 0.905 | 0.993 | 0.990 | 1.050 | 1.110 | 1.250 | 1.250 | 1.250 | |
6 | 0.681 | 0.780 | 0.878 | 0.961 | 1.030 | 1.090 | 1.000 | 1.010 | 1.020 | |
7 | 0.717 | 0.805 | 0.893 | 0.997 | 1.090 | 1.190 | 1.010 | 1.050 | 1.090 | |
8 | 1.290 | 1.460 | 1.620 | 0.842 | 0.895 | 0.949 | 0.881 | 0.891 | 0.900 | |
9 | 0.908 | 0.950 | 0.992 | 0.946 | 0.950 | 0.953 | 1.140 | 1.140 | 1.140 | |
10 | 0.694 | 0.783 | 0.871 | 0.934 | 1.040 | 1.140 | 1.100 | 1.110 | 1.120 | |
男性平均 | 0.885 | 1.020 | 1.160 | 0.953 | 1.030 | 1.110 | 1.000 | 1.050 | 1.100 | |
女性平均 | 0.775 | 0.928 | 1.080 | 0.945 | 1.040 | 1.130 | 0.989 | 1.070 | 1.150 | |
全体平均 | 0.827 | 0.977 | 1.130 | 0.949 | 1.030 | 1.120 | 0.993 | 1.060 | 1.120 |
[1] | SPARKES M. What is a metaverse[J]. New Scientist, 2021, 251(3348): 18. |
[2] | RAZZAQUE S, KOHN Z, WHITTON M C. Redirected walking[EB/OL]. [2024-04-04]. https://www.cs.unc.edu/techreports/01-007.pdf. |
[3] | ZHANG S H, CHEN C H, ZOLLMANN S. One-step out-of-place resetting for redirected walking in VR[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3327-3339. |
[4] | KRUSE L, LANGBEHN E, STEINICKE F. I can see on my feet while walking: sensitivity to translation gains with visible feet[C]// 2018 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2018: 305-312. |
[5] | WILLIAMS N L, PECK T C. Estimation of rotation gain thresholds considering FOV, gender, and distractors[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(11): 3158-3168. |
[6] | RIETZLER M, GUGENHEIMER J, HIRZLE T, et al. Rethinking redirected walking: on the use of curvature gains beyond perceptual limitations and revisiting bending gains[C]// 2018 IEEE International Symposium on Mixed and Augmented Reality. New York: IEEE Press, 2018: 115-122. |
[7] | XU S Z, CHEN F X Y, GONG R, et al. BiRD: using bidirectional rotation gain differences to redirect users during back-and-forth head turns in walking[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(5): 2693-2702. |
[8] | KIM D, KIM J, SHIN J E, et al. Effects of virtual room size and objects on relative translation gain thresholds in redirected walking[C]// 2022 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2022: 379-388. |
[9] | WANG L W, CAI S Y, SANDOR C. Perceptual thresholds of visual size discrimination in augmented and virtual reality[J]. Computers & Graphics, 2023, 117: 105-113. |
[10] | HÉBERT-LAVOIE M, DOYON-POULIN P, OZELL B. Identification of visual functional thresholds for immersion assessment in virtual reality[J]. PRESENCE: Virtual and Augmented Reality, 2020, 29: 1-22. |
[11] | KIM D, KIM S, SHIN J E, et al. The effects of spatial configuration on relative translation gain thresholds in redirected walking[J]. Virtual Reality, 2023, 27(2): 1233-1250. |
[12] | RAZZAQUE S. Redirected walking[D]. Chapel Hill: The University of North Carolina at Chapel Hill, 2005. |
[13] | LI Y J, STEINICKE F, WANG M. A comprehensive review of redirected walking techniques: taxonomy, methods, and future directions[J]. Journal of Computer Science and Technology, 2022, 37(3): 561-583. |
[14] | LANGBEHN E, STEINICKE F. Redirected walking in virtual reality[M]//LEE N. Encyclopedia of Computer Graphics and Games. Cham: Springer, 2018: 26-27. |
[15] | LANGBEHN E, LUBOS P, BRUDER G, et al. Application of redirected walking in room-scale VR[C]// 2017 IEEE Virtual Reality. New York: IEEE Press, 2017: 449-450. |
[16] | SRA M, XU X H, MOTTELSON A, et al. VMotion: designing a seamless walking experience in VR[C]// 2018 Designing Interactive Systems Conference. New York: ACM, 2018: 59-70. |
[17] | SUN Q, PATNEY A, WEI L Y, et al. Towards virtual reality infinite walking: dynamic saccadic redirection[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 67. |
[18] |
周强, 张敏雄, 吴新丽, 等. 体感交互虚拟漫游的沉浸感评价[J]. 图学学报, 2020, 41(3): 342-349.
DOI |
ZHOU Q, ZHANG M X, WU X L, et al. Immersion evaluation of virtual roaming with proprioceptive interaction[J]. Journal of Graphics, 2020, 41(3): 342-349 (in Chinese).
DOI |
|
[19] | INTERRANTE V, RIES B, ANDERSON L. Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments[C]// 2007 IEEE Symposium on 3D User interfaces. New York: IEEE Press, 2007. |
[20] | ABTAHI P, GONZALEZ-FRANCO M, OFEK E, et al. I’m a giant: walking in large virtual environments at high speed gains[C]// 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2019: 522. |
[21] | CARDOSO J C S, PERROTTA A. A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays[J]. Computers & Graphics, 2019, 85: 55-73. |
[22] | XU S Z, HUANG K, FAN C W, et al. Spatial contraction based on velocity variation for natural walking in virtual reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(5): 2444-2453. |
[23] |
STEINICKE F, BRUDER G, JERALD J, et al. Estimation of detection thresholds for redirected walking techniques[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(1): 17-27.
DOI PMID |
[24] |
马明明, 业全, 胡杨, 等. 头部旋转重定向的交互效率和眩晕感研究[J]. 图学学报, 2019, 40(3): 452-459.
DOI |
MA M M, YE Q, HU Y, et al. Research on the interaction efficiency and vertigo sensation of head rotation[J]. Journal of Graphics, 2019, 40(3): 452-459 (in Chinese). | |
[25] | TIRADO CORTES C A, CHEN H T, LIN C T. Analysis of VR sickness and gait parameters during non-isometric virtual walking with large translational gain[C]// The 17th International Conference on Virtual-Reality Continuum and its Applications in Industry. New York: ACM, 2019: 16. |
[26] | STEINICKE F, BRUDER G, ROPINSKI T, et al. Moving towards generally applicable redirected walking[EB/OL]. [2024-04-04]. https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.100/institut/Papers/viscom/2008/moving_towards.pdf#:-:text=In%20this%20paper%20we%20present%20an%20evaluation%20of,the%20design%20process%20of%20a%20virtual%20locomotion%20interface. |
[27] | NITZSCHE N, HANEBECK U D, SCHMIDT G. Motion compression for telepresent walking in large target environments[J]. Presence, 2004, 13(1): 44-60. |
[28] | GREEN D M, SWETS J A. Signal detection theory and psychophysics[M]. New York: Wiley, 1966: 61-62. |
[29] | HAUTUS M J, MACMILLAN N A, CREELMAN C D. Detection theory: a user’s guide[M]. 3rd ed. New York: Routledge, 2021: 89-90. |
[30] | GRECHKIN T, THOMAS J, AZMANDIAN M, et al. Revisiting detection thresholds for redirected walking: combining translation and curvature gains[C]// The ACM Symposium on Applied Perception. New York: ACM, 2016: 113-120. |
[31] | MEYER F, NOGALSKI M, FOHL W. Detection thresholds in audio-visual redirected walking[EB/OL]. [2024-04-04]. https://tore.tuhh.de/entities/publication/cd50e637-b253-4493-a107-ca55d636901c#:-:text=In%20this%20paper%20an%20experiment%20to%20measure%20the,the%20results%20are%20presented%20and%20compared%20to%20pre. |
[32] | ZHANG J X, LANGBEHN E, KRUPKE D, et al. Detection thresholds for rotation and translation gains in 360° video-based telepresence systems[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4): 1671-1680. |
[33] | SELZER M N, LARREA M L, CASTRO S M. Analysis of translation gains in virtual reality: the limits of space manipulation[J]. Virtual Reality, 2022, 26(4): 1459-1469. |
[34] | LUO E X, TANG K Y, XU S Z, et al. Walking telescope: exploring the zooming effect in expanding detection threshold range for translation gain[C]// The 12th International Conference on Computational Visual Media. Cham: Springer, 2024: 252-273. |
[35] | KENNEDY R S, LANE N E, BERBAUM K S, et al. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness[J]. The International Journal of Aviation Psychology, 1993, 3(3): 203-220. |
[36] | WANG C, ZHANG S H, ZHANG Y Z, et al. On rotation gains within and beyond perceptual limitations for seated VR[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3380-3391. |
[37] | SANAEI M, GILBERT S B, JAVADPOUR N, et al. The correlations of scene complexity, workload, presence, and cybersickness in a task-based VR game[C]// International Conference on Human-Computer Interaction. Cham: Springer, 2024: 277-289. |
[1] | 张雨菲, 丁玎, 李竹颖. 基于情绪捕捉实现艺术再创造的虚拟现实体验[J]. 图学学报, 2025, 46(4): 775-782. |
[2] | 朱晓强, 杨伊菲. 虚拟现实环境下的自由雕刻系统[J]. 图学学报, 2025, 46(2): 345-357. |
[3] | 杨浩中, 孔笑宇, 辜睿坤, 汪淼. 虚拟现实中的大模型技术研究进展与趋势[J]. 图学学报, 2024, 45(6): 1117-1131. |
[4] | 栾帅, 吴健, 樊润泽, 王莉莉. 基于观察质量场的虚拟对象协同操作方法[J]. 图学学报, 2024, 45(6): 1338-1348. |
[5] | 任洋甫, 于歌, 傅月瑶, 胥森哲, 何煜, 王巨宏, 张松海. 虚拟现实中场景和时间对用户空间方向认知的影响[J]. 图学学报, 2024, 45(6): 1349-1363. |
[6] | 严家豪, 吕健, 侯宇康, 莫心祝. 虚拟现实中眼动交互频率对视觉疲劳影响的研究[J]. 图学学报, 2024, 45(3): 528-538. |
[7] | 王浩淼, 桑胜举, 段晓东, 张伟华, 陶体伟, 马婷. 虚拟现实环境下的协同式三维建模方法[J]. 图学学报, 2024, 45(1): 169-182. |
[8] | 韩兆阳, 翁冬冬, 郭署山, 贺文杰, 江海燕, 李冬. 一种基于简易标记点编码的光学跟踪系统[J]. 图学学报, 2023, 44(5): 997-1012. |
[9] | 谢红霞, 胡毓宁, 张赟, 王亚奇, 杜辉, 秦爱红. 全景图像视频的场景分析与内容处理方法综述[J]. 图学学报, 2023, 44(4): 640-657. |
[10] | 朱永宁 , 葛 婷 , 杜盛瑀 , 楼泽如 , 王建民 . 虚拟现实全景流体绘画系统的可用性研究[J]. 图学学报, 2021, 42(5): 833-840. |
[11] | 赵建军, 黄竣鹏, 陈俊良. 基于 Leap Motion 的电影前期预演 人机交互方法[J]. 图学学报, 2021, 42(1): 71-78. |
[12] | 郑明钰, 李家和, 张 晗, 骆岩林, 申佳丽, 朱小明. 支持力反馈的沉浸式物理学习环境的构建 [J]. 图学学报, 2021, 42(1): 79-86. |
[13] | 滕 健, 黄佳慧, 宫 凯 . 基于 BCI 的虚拟现实模拟驾驶教学系统设计[J]. 图学学报, 2020, 41(2): 217-223. |
[14] | 邱远航 1, 孙贤波 1, 刘勇弟 1, 蔡正清 1, 徐宏勇 2 . 污水处理厂虚拟现实教学软件开发及应用[J]. 图学学报, 2020, 41(2): 233-236. |
[15] | 林莹莹, 蔡睿凡, 朱雨真, 唐祥峻, 金小刚. 基于Leap Motion 的虚拟现实陶艺体验系统[J]. 图学学报, 2020, 41(1): 57-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||