欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (5): 1050-1061.DOI: 10.11996/JG.j.2095-302X.2024051050

• 建筑与城市信息模型 • 上一篇    下一篇

基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究

孙己龙1(), 刘勇2, 周黎伟2, 路鑫3,4, 侯小龙2, 王亚琼2, 王志丰2()   

  1. 1.陕西省交通运输工程质量监测鉴定站,陕西 西安 710075
    2.长安大学公路学院,陕西 西安 710064
    3.长安大学材料科学与工程学院,陕西 西安 710061
    4.西安公路研究院有限公司,陕西 西安 710065
  • 收稿日期:2024-04-24 修回日期:2024-08-13 出版日期:2024-10-31 发布日期:2024-10-31
  • 通讯作者:王志丰(1986-),男,教授,博士。主要研究方向为隧道及岩土工程。E-mail:zhifeng.wang@chd.edu.cn
  • 第一作者:孙己龙(1971-),男,高级工程师,硕士。主要研究方向为公路工程质量和安全监督工作。E-mail:956036513@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFB2600404);陕西省交通运输厅交通科技项目(22-09K);陕西省创新能力支撑计划项目(2023-CX-TD-35);陕西省重点研发计划项目(2023KXJ-159)

Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder

SUN Jilong1(), LIU Yong2, ZHOU Liwei2, LU Xin3,4, HOU Xiaolong2, WANG Yaqiong2, WANG Zhifeng2()   

  1. 1. Shaanxi Provincial Transportation Engineering Quality Monitoring and Appraisal Station, Xi’an Shaanxi 710075, China
    2. School of Highway, Chang’an University, Xi’an Shaanxi 710064, China
    3. School of Materials Science and Engineering, Chang’an University, Xi’an Shaanxi 710061, China
    4. Xi’an highway research institute Co., Ltd., Xi’an Shaanxi 710065, China
  • Received:2024-04-24 Revised:2024-08-13 Published:2024-10-31 Online:2024-10-31
  • Contact: WANG Zhifeng (1986-), professor, Ph.D. His main research interest covers tunnel and geotechnical engineering. E-mail:zhifeng.wang@chd.edu.cn
  • First author:SUN Jilong (1971-), senior engineer, master. His main research interest covers e quality and safety supervision of highway. E-mail:956036513@qq.com
  • Supported by:
    National Key Research and Development Program of China(2021YFB2600404);Shaanxi Transportation Technology Project(22-09K);The Innovation Capability Support Program of Shaanxi(2023-CX-TD-35);The Key Research and Development Program of Shaanxi(2023KXJ-159)

摘要:

为解决因衬砌裂缝性状随机、分布密集、标注框分辨率低所导致的现有模型识别精度低、检测速度慢及参数量庞大等问题,以第2版可变形卷积网络(DCNv2)和端到端变换器解码器(Transformer Decoder)为基础对YOLOv8网络框架进行改进,提出了面向衬砌裂缝的检测模型DTD-YOLOv8。首先,通过引入DCNv2对YOLOv8主干卷积网络C2f进行融合以实现模型对裂缝形变特征的准确快速感知,同时采用Transformer Decoder对YOLOv8检测头进行替换以实现端到端框架内完整目标检测流程,从而消除因Anchor-free处理模式所带来的计算消耗。采用自建裂缝数据集对SSD,Faster-RCNN,RT-DETR,YOLOv3,YOLOv5,YOLOv8和DTD-YOLOv8的7种检测模型进行对比验证。结果表明:改进模型F1分数和mAP@50值分别为87.05%和89.58%;其中F1分数相较其他6种模型分别提高了14.16%,7.68%,1.55%,41.36%,8.20%和7.40%;mAP@50分别提高了28.84%,15.47%,1.33%,47.65%,10.14%和10.84%。改进模型参数量仅为RT-DETR的三分之一,检测单张图片的速度为16.01 ms,FPS为65.46帧每秒,对比其他模型检测速度得到提升。该模型在面向运营隧道裂缝检测任务需求时能够表现出高效的性能。

关键词: 隧道工程, 目标检测, 第2版可变形卷积网络, Transformer Decoder, 衬砌裂缝

Abstract:

To address the problems of low recognition accuracy, slow detection speed, and large parameter quantities caused by the random and dense distribution of cracks in tunnel linings and low resolution of annotation boxes in existing models, the YOLOv8 network framework was improved based on the Deformable Convolution Network version 2 (DCNv2) and end-to-end Transformer Decoder to propose a lining crack detection model DTD-YOLOv8. Firstly, DCNv2 was added to fuse the YOLOv8 backbone convolutional network C2f, enabling the model to accurately and quickly perceive crack deformation features. At the same time, the Transformer Decoder replaced the YOLOv8 detection head to achieve a complete object detection process within an end-to-end framework, thereby eliminating the computational consumption caused by the Anchor-free processing mode. A self-built crack dataset was used to compare and verify seven detection models, including SSD, Faster-RCNN, RT-DETR, YOLOv3, YOLOv5, YOLOv8, and DTD-YOLOv8. The results indicated that the F1 score and mAP@50 of DTD-YOLOv8 reached 87.05% and 89.58%, respectively. Compared to the other six models, the F1 score increased by 14.16%, 7.68%, 1.55%, 41.36%, 8.20%, and 7.40%, while the mAP@50 increased by 28.84%, 15.47%, 1.33%, 47.65%, 10.14%, and 10.84%. The parameter count of the new model was only one-third of RT-DETR, and the detection speed for a single image was 16.01 ms, with an FPS of 65.46 frames per second, demonstrating a speed improvement over other comparative model. The DTD-YOLOv8 model can demonstrate efficient performance in meeting the requirements of crack detection tasks in operational tunnels.

Key words: tunnel engineering, object detection, deformable convolution network v2, Transformer Decoder, lining crack

中图分类号: