图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1301-1312.DOI: 10.11996/JG.j.2095-302X.2024061301
李珍峰1(), 符世琛1(
), 徐乐2, 孟博1, 张昕1, 秦建军1
收稿日期:
2024-07-26
接受日期:
2024-08-29
出版日期:
2024-12-31
发布日期:
2024-12-24
通讯作者:
符世琛(1991-),男,讲师,博士。主要研究方向为机器人智能导控。E-mail:fushichen@bucea.edu.cn第一作者:
李珍峰(2000-),男,硕士研究生。主要研究方向为计算机视觉。E-mail:bluekite00@163.com
基金资助:
LI Zhenfeng1(), FU Shichen1(
), XU Le2, MENG Bo1, ZHANG Xin1, QING Jianjun1
Received:
2024-07-26
Accepted:
2024-08-29
Published:
2024-12-31
Online:
2024-12-24
Contact:
FU Shichen (1991-), lecturer, Ph.D. His main research interests cover intelligent robot guidance and control. E-mail:fushichen@bucea.edu.cnFirst author:
LI Zhenfeng (2000-), master student. His main research interest covers computer vision. E-mail:bluekite00@163.com
Supported by:
摘要:
为在煤矸石分拣领域实现检测性能与资源消耗的平衡,提出一种基于改进YOLOv8的适用于低性能检测平台的高效实时轻量化目标检测算法。首先以YOLOv8n为基础网络架构,引入MobileNetv3替换原有的主干网络,利用其轻量级结构特性降低模型参数量及运算量,提高模型检测速度;其次引入特征增强网络BIFPN模块,通过多尺度特征融合来弥补引入轻量级网络带来的检测精度损失,实现在保证检测精度的情况下完成模型轻量化;最后引入Inner-CIoU边界框回归损失函数平衡不同质量图像的训练结果,提高模型的定位能力,进一步提高检测精度及速度。为验证改进算法的有效性,进行了实验对比分析,将其与YOLOv3-tiny,YOLOv5n,YOLOv7以及YOLOv8n等算法在自建数据集上进行对比。实验结果表明,该算法展现出了最优的综合检测性能,在保证检测精度的前提下,其参数量降低到1 188 725,相较于YOLOv8n减少了60.46%,运算量由原模型的8.1 GFLOPs降低到2.8 GFLOPs,FPS由YOLOv8n的86.02 Hz提升到216.58 Hz。研究表明,该算法是一种高效实时轻量化煤矸石检测算法,综合检测性能有效提高,实现了模型检测性能与计算资源消耗的平衡,在煤矸石检测领域有较大的潜力和优越性。
中图分类号:
李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312.
LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8[J]. Journal of Graphics, 2024, 45(6): 1301-1312.
种类 | 数量 | 总计 | ||
---|---|---|---|---|
单目标 图像 | 双目标 图像 | 多目标 图像 | ||
煤 | 200 | 260 | 1 844 | 2 400 |
煤矸石 | 96 |
表1 煤矸石数据集明细表
Table 1 Details of the coal gangue datasets
种类 | 数量 | 总计 | ||
---|---|---|---|---|
单目标 图像 | 双目标 图像 | 多目标 图像 | ||
煤 | 200 | 260 | 1 844 | 2 400 |
煤矸石 | 96 |
图12 数据增强前后对比图((a)旋转;(b)翻转;(c)亮度调节;(d)添加噪声)
Fig. 12 Comparison of images before and after data augmentation ((a) Rotation; (b) Flipping; (c) Brightness adjustment; (d) Adding noise)
实验环境 | 版本型号 | |
---|---|---|
硬件配置 | CPU | Intel Core i5-13400F |
内存 | 16 GB | |
GPU | NVIDIA GeForce RTX 4060 Ti | |
显存 | 8 GB | |
操作环境 | Windows 11 | |
软件配置 | Python | 3.8.19 |
Pytorch | 1.13.1 | |
CUDA | 11.7 | |
CUDNN | 11.7 |
表2 实验环境配置
Table 2 Experimental environment configuration
实验环境 | 版本型号 | |
---|---|---|
硬件配置 | CPU | Intel Core i5-13400F |
内存 | 16 GB | |
GPU | NVIDIA GeForce RTX 4060 Ti | |
显存 | 8 GB | |
操作环境 | Windows 11 | |
软件配置 | Python | 3.8.19 |
Pytorch | 1.13.1 | |
CUDA | 11.7 | |
CUDNN | 11.7 |
损失函数 | mAP0.5/% | mAP0.5:0.95/% | Postprocess per image/ms | FPS/Hz |
---|---|---|---|---|
CIoU | 99.5 | 95.7 | 0.9 | 86.02 |
DIoU | 99.5 | 96.2 | 0.5 | 236.27 |
GIoU | 99.5 | 96.3 | 0.6 | 231.62 |
EIoU | 99.5 | 96.4 | 1.8 | 73.17 |
SIoU | 99.5 | 96.4 | 2.7 | 101.91 |
WIoU v1 | 99.5 | 96.5 | 4.7 | 85.86 |
WIoU v2 | 99.5 | 96.4 | 1.2 | 133.80 |
WIoU v3 | 99.5 | 96.0 | 1.9 | 165.41 |
Inner-CIoU (ratio=0.7) | 99.5 | 96.5 | 0.7 | 141.47 |
Inner-CIoU (ratio=0.75) | 99.5 | 96.3 | 0.8 | 128.15 |
Inner-CIoU (ratio=0.8) | 99.5 | 96.4 | 0.7 | 138.73 |
Inner-DIoU | 99.5 | 96.7 | 1.0 | 169.88 |
表3 损失函数实验结果
Table 3 Experimental results of loss functions
损失函数 | mAP0.5/% | mAP0.5:0.95/% | Postprocess per image/ms | FPS/Hz |
---|---|---|---|---|
CIoU | 99.5 | 95.7 | 0.9 | 86.02 |
DIoU | 99.5 | 96.2 | 0.5 | 236.27 |
GIoU | 99.5 | 96.3 | 0.6 | 231.62 |
EIoU | 99.5 | 96.4 | 1.8 | 73.17 |
SIoU | 99.5 | 96.4 | 2.7 | 101.91 |
WIoU v1 | 99.5 | 96.5 | 4.7 | 85.86 |
WIoU v2 | 99.5 | 96.4 | 1.2 | 133.80 |
WIoU v3 | 99.5 | 96.0 | 1.9 | 165.41 |
Inner-CIoU (ratio=0.7) | 99.5 | 96.5 | 0.7 | 141.47 |
Inner-CIoU (ratio=0.75) | 99.5 | 96.3 | 0.8 | 128.15 |
Inner-CIoU (ratio=0.8) | 99.5 | 96.4 | 0.7 | 138.73 |
Inner-DIoU | 99.5 | 96.7 | 1.0 | 169.88 |
YOLOv8n | Inner-CIoU | MobileNetv3 | BiFPN | Precision/% | Recall/% | mAP0.5/% | mAP0.5:0.95/% | 模型大小/ MB | 模型 参数量 | 运算量/ GFLOPs | FPS/ Hz |
---|---|---|---|---|---|---|---|---|---|---|---|
√ | 99.9 | 100 | 99.5 | 95.7 | 6.3 | 3 006 038 | 8.1 | 86.02 | |||
√ | √ | 100.0 | 100 | 99.5 | 96.5 | 6.3 | 3 006 038 | 8.1 | 141.47 | ||
√ | √ | √ | 99.7 | 100 | 99.4 | 94.6 | 2.7 | 1 188 716 | 2.8 | 77.32 | |
√ | √ | 99.9 | 100 | 99.5 | 98.6 | 6.3 | 3 006 047 | 8.1 | 236.37 | ||
√ | √ | √ | √ | 99.9 | 100 | 99.5 | 96.1 | 2.6 | 1 188 725 | 2.8 | 216.58 |
表4 消融实验结果
Table 4 Results of ablation experiments
YOLOv8n | Inner-CIoU | MobileNetv3 | BiFPN | Precision/% | Recall/% | mAP0.5/% | mAP0.5:0.95/% | 模型大小/ MB | 模型 参数量 | 运算量/ GFLOPs | FPS/ Hz |
---|---|---|---|---|---|---|---|---|---|---|---|
√ | 99.9 | 100 | 99.5 | 95.7 | 6.3 | 3 006 038 | 8.1 | 86.02 | |||
√ | √ | 100.0 | 100 | 99.5 | 96.5 | 6.3 | 3 006 038 | 8.1 | 141.47 | ||
√ | √ | √ | 99.7 | 100 | 99.4 | 94.6 | 2.7 | 1 188 716 | 2.8 | 77.32 | |
√ | √ | 99.9 | 100 | 99.5 | 98.6 | 6.3 | 3 006 047 | 8.1 | 236.37 | ||
√ | √ | √ | √ | 99.9 | 100 | 99.5 | 96.1 | 2.6 | 1 188 725 | 2.8 | 216.58 |
模型 | Precision/% | Recall/% | mAP0.5/% | mAP0.5:0.95/% | 模型大小/MB | 模型参数量 | 运算量/GFLOPs | FPS/Hz |
---|---|---|---|---|---|---|---|---|
YOLOv3-tiny | 99.3 | 100 | 99.5 | 94.9 | 24.4 | 12 128 692 | 18.9 | 63.86 |
YOLOv5 | 99.6 | 100 | 99.5 | 97.5 | 5.3 | 2 503 334 | 7.1 | 85.15 |
YOLOv7 | 100.0 | 100 | 99.8 | 97.4 | 74.8 | 37 201 950 | 105.1 | 52.38 |
YOLOv8n | 99.9 | 100 | 99.5 | 95.7 | 6.3 | 3 006 038 | 8.1 | 86.02 |
MBI-YOLOv8 | 99.9 | 100 | 99.5 | 96.1 | 2.6 | 1 188 725 | 2.8 | 216.58 |
表5 多种模型对比实验结果
Table 5 Comparative experimental results of multiple models
模型 | Precision/% | Recall/% | mAP0.5/% | mAP0.5:0.95/% | 模型大小/MB | 模型参数量 | 运算量/GFLOPs | FPS/Hz |
---|---|---|---|---|---|---|---|---|
YOLOv3-tiny | 99.3 | 100 | 99.5 | 94.9 | 24.4 | 12 128 692 | 18.9 | 63.86 |
YOLOv5 | 99.6 | 100 | 99.5 | 97.5 | 5.3 | 2 503 334 | 7.1 | 85.15 |
YOLOv7 | 100.0 | 100 | 99.8 | 97.4 | 74.8 | 37 201 950 | 105.1 | 52.38 |
YOLOv8n | 99.9 | 100 | 99.5 | 95.7 | 6.3 | 3 006 038 | 8.1 | 86.02 |
MBI-YOLOv8 | 99.9 | 100 | 99.5 | 96.1 | 2.6 | 1 188 725 | 2.8 | 216.58 |
[1] | 孙超, 姜琳, 袁广玉. “十四五”期间我国煤炭供需趋势分析[J]. 煤炭工程, 2021, 53(5): 193-196. |
SUN C, JIANG L, YUAN G Y. Trend analysis of China’s coal supply and demand during the 14th Five-Year Plan[J]. Coal Engineering, 2021, 53(5): 193-196. (in Chinese) | |
[2] | REN Y H, LI R F, GAO H, et al. Research on the evaluation model and suggestions of coal resources mining level in China[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170(2): 022064. |
[3] | 许永祥, 李申龙, 王国法, 等. 特厚坚硬煤层超大采高综放首采工作面智能化技术[J]. 煤炭科学技术, 2020, 48(7): 186-194. |
XU Y X, LI S L, WANG G F, et al. Intelligent technology of first-mining face of longwall top-coal caving with super large cutting height in extra-thick and hard coal seam[J]. Coal Science and Technology, 2020, 48(7): 186-194. (in Chinese) | |
[4] | 李曼, 段雍, 曹现刚, 等. 煤矸分选机器人图像识别方法和系统[J]. 煤炭学报, 2020, 45(10): 3636-3644. |
LI M, DUAN Y, CAO X G, et al. Image identification method and system for coal and gangue sorting robot[J]. Journal of China Coal Society, 2020, 45(10): 3636-3644. (in Chinese) | |
[5] | 康利, 黄金辉, 刘畅. GDRT型γ射线智能干法分选系统在六家煤矿的应用[J]. 煤炭加工与综合利用, 2017(3): 22-24. |
KANG L, HUANG J H, LIU C. Application of GDRT type gamma-ray intelligent dry sorting system in six coal mines[J]. Coal Processing & Comprehensive Utilization, 2017(3): 22-24. (in Chinese) | |
[6] | 张宁波. 综放开采煤矸自然射线辐射规律及识别研究[D]. 徐州: 中国矿业大学, 2015. |
ZHANG N B. Detection and radiation law of natural gamma ray from coal and roof-rock in the fully mechanized top coal caving mining[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese) | |
[7] | 崔斌, 陈林, 亓玉浩, 等. 基于改进YOLO v4的煤矸石识别检测技术研究[J]. 煤炭工程, 2023, 55(12): 161-166. |
CUI B, CHEN L, QI Y H, et al. Coal gangue detection technology based on improved YOLO v4[J]. Coal Engineering, 2023, 55(12): 161-166. (in Chinese) | |
[8] | 吕璐, 程虎, 朱鸿泰, 等. 基于深度学习的目标检测研究与应用综述[J]. 电子与封装, 2022, 22(1): 010307. |
LV L, CHENG H, ZHU H T, et al. Progress of research and application of object detection based on deep learning[J]. Electronics & Packaging, 2022, 22(1): 010307. (in Chinese) | |
[9] |
高昂, 梁兴柱, 夏晨星, 等. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898.
DOI |
GAO A, LIANG X Z, XIA C X, et al. A dense pedestrian detection algorithm with improved YOLOv8[J]. Journal of Graphics, 2023, 44(5): 890-898. (in Chinese)
DOI |
|
[10] | 李德永, 王国法, 郭永存, 等. 基于CFS-YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术, 2024, 52(6): 226-237. |
LI D Y, WANG G F, GUO Y C, et al. Image recognition method of coal gangue in complex working conditions based on CES-YOLO algorithm[J]. Coal Science and Technology, 2024, 52(6): 226-237. (in Chinese) | |
[11] | 常枫懿, 赵国贞. 基于YOLOv5m改进模型的煤矸识别方法[J]. 煤炭技术, 2023, 42(7): 10-14. |
CHANG F Y, ZHAO G Z. Identification method of coal and Gangue based on YOLOv5m improved model[J]. Coal Technology, 2023, 42(7): 10-14. (in Chinese) | |
[12] | 韦小龙, 王方田, 何东升, 等. 基于CSPNet-YOLOv7目标检测算法的煤矸图像识别模型[J]. 煤炭科学技术, 2024, 52(S1): 238-248. |
WEI X L, WANG F T, HE D S, et al. Coal gangue image recognition model based on CSPNet-YOLOv7 target detection algorithm[J]. Coal Science and Technology, 2024, 52(S1): 238-248. (in Chinese) | |
[13] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1314-1324. |
[14] | LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6053-6062. |
[15] | ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. (2023-11-06) [2024-06-16]. https://arxiv.org/abs/2311.02877. |
[16] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[17] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[18] | VARGHESE R, SAMBATH M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]// 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. New York: IEEE Press, 2024: 1-6. |
[19] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432.
DOI |
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432. (in Chinese)
DOI |
|
[20] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[21] |
翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101.
DOI |
ZHAI Y J, ZHAO X Y, WANG L Y, et al. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101. (in Chinese)
DOI |
|
[22] | 葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9): 2627-2653. |
GE D H, LI H S, ZHANG L, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9): 2627-2653. (in Chinese) | |
[23] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2024-06-16]. https://arxiv.org/abs/1704.04861. |
[24] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[25] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[26] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[27] | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. [2024-05-25]. https://ojs.aaai.org/index.php/AAAI/article/view/6999. |
[28] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-09) [2024-06-16]. https://arxiv.org/abs/1804.02767. |
[1] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[2] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[3] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[4] | 姜晓恒, 段金忠, 卢洋, 崔丽莎, 徐明亮. 融合先验知识推理的表面缺陷检测[J]. 图学学报, 2024, 45(5): 957-967. |
[5] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[6] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
[7] | 孙己龙, 刘勇, 周黎伟, 路鑫, 侯小龙, 王亚琼, 王志丰. 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061. |
[8] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[9] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
[10] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735. |
[11] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[12] | 宫永超, 沈旭昆. 一种用于互惠目标检测与实例分割的深层架构[J]. 图学学报, 2024, 45(4): 745-759. |
[13] | 张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453. |
[14] | 胡欣, 胡帅, 马丽军, 司利云, 肖剑, 袁晔. 基于融合MBAM与YOLOv5的PCB缺陷检测方法[J]. 图学学报, 2024, 45(1): 47-55. |
[15] | 魏陈浩, 杨睿, 刘振丙, 蓝如师, 孙希延, 罗笑南. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||