欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1233-1246.DOI: 10.11996/JG.j.2095-302X.2025061233

• 制造产品核心工业软件 • 上一篇    下一篇

基于退化感知时序建模的装备维保时机预测方法

薄文1,2(), 琚晨2, 刘维青3, 张焱4, 胡晶晶1, 程婧晗2, 张常有2()   

  1. 1 北京理工大学计算机学院北京 100081
    2 中国科学院软件研究所北京 100190
    3 中铁十九局集团有限公司北京 100176
    4 新疆大学软件学院新疆 乌鲁木齐 830046
  • 收稿日期:2025-09-10 接受日期:2025-11-04 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:张常有(1970-),男,研究员,博士。主要研究方向为工业仿真软件和并行计算等。E-mail:changyou@iscas.ac.cn
  • 第一作者:薄文(1995-),男,博士研究生。主要研究方向为系统仿真与工业智能。E-mail:bowen@iscas.ac.cn
  • 基金资助:
    国家重点研发计划(2023YFB3611303);中华人民共和国水利部重大项目(SKS-2022104)

Degradation-driven temporal modeling method for equipment maintenance interval prediction

BO Wen1,2(), JU Chen2, LIU Weiqing3, ZHANG Yan4, HU Jingjing1, CHENG Jinghan2, ZHANG Changyou2()   

  1. 1 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China
    2 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
    3 China Railway 19 Bureau Group Co., Ltd., Beijing 100176, China
    4 School of Software, Xinjiang University, ürümqi Xinjiang 830046, China
  • Received:2025-09-10 Accepted:2025-11-04 Published:2025-12-30 Online:2025-12-27
  • First author:BO Wen (1995-),PhD candidate. His main research interests cover system simulation and industrial intelligence. E-mail:bowen@iscas.ac.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFB3611303);Major Project of the Ministry of Water Resources of the People’s Republic of China(SKS-2022104)

摘要:

维保时机强调装备停机的主动性,是在性能退化达到预设值前,结合工程节奏合理安排停机检修。该任务的精准预测对装备可靠运行至关重要,但仍面临多源数据融合、退化特征量化难及长依赖学习等挑战。因此提出一种基于退化感知时序建模的装备维保时机预测方法,以动态表征装备连续运行过程中的性能退化,并自适应捕获多传感器数据间的深层依赖关系。首先,提出性能退化指标(PDI),通过时序数据驱动的性能量化器,实现动态的装备性能衰减感知;然后,构建基于多头注意力机制与序列到序列的维保时机预测模型,以自适应学习多源特征的相关性;最后,融合退化感知参数以强化特征权重分配,提升模型对装备长期运行趋势的预测能力。实验结果表明,融合PDI后模型最佳性能提升近13.5%,在隧道掘进机(TBM)工程数据集上较标准长短期记忆网络(LSTM)的均方根误差(RMSE)提升约25%,相比其他模型提升近15%以上,实现了较高的预测精度。在C-MAPSS数据集上与循环神经网络(RNN)和图神经网络(GNN)及注意力机制等主流时序预测方法进行了对比验证,结果表明该方法在维保时机预测任务中表现最优,并详细分析不同传感器数量对模型性能的影响。此外,该方法具备良好的可扩展性,可进一步融合装备运行环境信息感知,为装备的智能运维决策与操控闭环提供技术支撑。

关键词: 维保时机预测, 多头注意力机制, 序列到序列, 深度学习, 智能运维

Abstract:

Maintenance-interval prediction focuses on the proactive scheduling of equipment downtime, arranging maintenance before performance degradation reaches a predefined threshold while aligning with engineering operations. Accurate prediction of such intervals is vital for reliable equipment operation but remains challenging due to difficulties in multi-source data fusion, quantitative degradation characterization, and long-term dependency learning. This study presented a degradation-driven temporal modeling method that dynamically represented performance deterioration during continuous operation and adaptively captured complex dependencies among multi-sensor data. A performance-degradation indicator (PDI) quantified equipment performance decline using time-series measurements. To capture correlations among multi-source features, a sequence-to-sequence prediction model with multi-head attention was constructed and degradation-aware parameters were integrated, which optimized feature weighting and improved long-term trend prediction. The experimental results indicated that the optimal performance of the model improved by nearly 13.5% after integrating PDI. On the TBM (tunnel boring machine) engineering dataset, an RMSE (root mean square error) improvement of approximately 25% was achieved compared to the standard LSTM (long short-term memory), and outperformed other models by nearly 15%, yielding high prediction accuracy. Further evaluation on the C-MAPSS dataset against RNN (recurrent neural network), GNN (graph neural network), and attention-based methods confirmed the approach’s effectiveness, offering a detailed analysis of how varying the number of sensors affected model performance. The method also exhibited strong scalability and could be extended to incorporate environmental-condition awareness, providing technical support for intelligent maintenance decision-making and closed-loop operational control.

Key words: maintenance interval prediction, multi-head attention mechanism, sequence-to-sequence model, deep learning, intelligent maintenance systems

中图分类号: