图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1247-1256.DOI: 10.11996/JG.j.2095-302X.2025061247
赵振兵1,2,3(
), 欧阳文斌1, 冯烁1, 李浩鹏1,2, 马隽4
收稿日期:2025-01-04
接受日期:2025-04-16
出版日期:2025-12-30
发布日期:2025-12-27
第一作者:赵振兵(1979-),男,教授,博士。主要研究方向为电力视觉技术等。E-mail:zhaozhenbing@ncepu.edu.cn
基金资助:
ZHAO Zhenbing1,2,3(
), Ouyang Wenbin1, FENG Shuo1, LI Haopeng1,2, MA Jun4
Received:2025-01-04
Accepted:2025-04-16
Published:2025-12-30
Online:2025-12-27
First author:ZHAO Zhenbing (1979-), professor, Ph.D. His main research interests cover computer vision technology in electric power system, etc. E-mail:zhaozhenbing@ncepu.edu.cn
Supported by:摘要:
为了实现低分辨率绝缘子红外图像的高精度检测,提出了基于类内稀疏先验和改进YOLOv8的红外多尺度绝缘子检测方法。针对绝缘子图像存在局部密集导致漏检的问题,提出了通用性的类内稀疏先验,将先验知识和训练数据结合,使模型感知绝缘子独有的几何特征和形态信息,可以无计算代价地提升目标检测模型的精度,并提供一种绝缘子数据样本的规范化标注方法;针对红外图像分辨率低导致特征提取困难的问题,将鲁棒特征下采样模块替代卷积下采样,保留细粒度细节信息,增强关键特征图的鲁棒表示;针对绝缘子尺度变化大且存在目标遮挡的问题,设计了wise-MPDIoU改进边框损失函数,以改善模型对不同尺寸绝缘子的定位能力。实验数据表明,相比于基线模型,在AP50和AP50:95指标上分别提升3.3和3.5个百分点,为绝缘子热像检测提供了新的方案。
中图分类号:
赵振兵, 欧阳文斌, 冯烁, 李浩鹏, 马隽. 基于类内稀疏先验与改进YOLOv8的绝缘子红外图像检测方法[J]. 图学学报, 2025, 46(6): 1247-1256.
ZHAO Zhenbing, Ouyang Wenbin, FENG Shuo, LI Haopeng, MA Jun. A thermal image detection method for insulators incorporating within-class sparse prior knowledge and improved YOLOv8[J]. Journal of Graphics, 2025, 46(6): 1247-1256.
图1 数据集的3种标注方法((a) 原始标注方法;(b) 稀疏先验;(c) 类内稀疏先验)
Fig. 1 Three annotation methods for data sets ((a) Original annotation method; (b) Sparse prior; (c) Within-class sparse prior)
图2 类内稀疏先验的热力图可视化((a) 原始标注方法;(b) 稀疏先验;(c) 类内稀疏先验)
Fig. 2 Heat map visualization within-class sparse prior knowledge ((a) Original annotation method; (b) Sparse prior; (c) Within-class sparse prior)
图4 基于类内稀疏先验和改进YOLOv8的红外多尺度绝缘子检测方法
Fig. 4 A thermal image detection method for insulators incorporating within-class sparse prior knowledge and improved YOLOv8
| 模型 | 标注方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|
| ① | 86.9 | 72.4 | 80.9 | 57.6 | 87.72 | |||
| RT-DETRr18 | ② | 88.9 | 77.6 | 85.5 | 59.9 | 75.19 | 56.9 | 19.9 |
| ③ | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | |||
| ① | 82.6 | 70.5 | 82.1 | 57.6 | 161.29 | |||
| YOLOv10n | ② | 80.0 | 75.7 | 82.2 | 56.4 | 123.46 | 8.2 | 2.7 |
| ③ | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | |||
| ① | 91.1 | 75.2 | 82.9 | 49.2 | 588.24 | |||
| YOLOv7t | ② | 87.9 | 78.5 | 85.1 | 54.0 | 555.56 | 13.0 | 6.0 |
| ③ | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | |||
| ① | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | |||
| YOLOV8n | ② | 87.6 | 80.6 | 88.0 | 61.4 | 151.52 | 8.1 | 3.0 |
| ③ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 |
表1 类内稀疏先验通用性的实验
Table 1 Experiments on sparse prior generality within-class
| 模型 | 标注方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|
| ① | 86.9 | 72.4 | 80.9 | 57.6 | 87.72 | |||
| RT-DETRr18 | ② | 88.9 | 77.6 | 85.5 | 59.9 | 75.19 | 56.9 | 19.9 |
| ③ | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | |||
| ① | 82.6 | 70.5 | 82.1 | 57.6 | 161.29 | |||
| YOLOv10n | ② | 80.0 | 75.7 | 82.2 | 56.4 | 123.46 | 8.2 | 2.7 |
| ③ | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | |||
| ① | 91.1 | 75.2 | 82.9 | 49.2 | 588.24 | |||
| YOLOv7t | ② | 87.9 | 78.5 | 85.1 | 54.0 | 555.56 | 13.0 | 6.0 |
| ③ | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | |||
| ① | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | |||
| YOLOV8n | ② | 87.6 | 80.6 | 88.0 | 61.4 | 151.52 | 8.1 | 3.0 |
| ③ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 |
| YOLOv8n | 类内稀疏先验 | RFD | Wise-MPDIoU | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|---|---|
| √ | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | 8.1 | 3.01 | |||
| √ | √ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 | 8.1 | 3.01 | ||
| √ | √ | √ | 93.5 | 86.2 | 92.1 | 63.9 | 121.95 | 8.1 | 3.02 | |
| √ | √ | √ | 95.6 | 85.8 | 92.4 | 64.1 | 144.93 | 9.6 | 3.01 | |
| √ | √ | √ | √ | 93.6 | 87.6 | 92.4 | 65.2 | 120.48 | 9.6 | 3.02 |
表2 模型结构消融实验结果
Table 2 The ablation experimental result of the model structure
| YOLOv8n | 类内稀疏先验 | RFD | Wise-MPDIoU | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|---|---|
| √ | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | 8.1 | 3.01 | |||
| √ | √ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 | 8.1 | 3.01 | ||
| √ | √ | √ | 93.5 | 86.2 | 92.1 | 63.9 | 121.95 | 8.1 | 3.02 | |
| √ | √ | √ | 95.6 | 85.8 | 92.4 | 64.1 | 144.93 | 9.6 | 3.01 | |
| √ | √ | √ | √ | 93.6 | 87.6 | 92.4 | 65.2 | 120.48 | 9.6 | 3.02 |
图7 消融实验结果可视化((a) 原图;(b) 基线;(c) 融合类内稀疏先验;(d) 融合类内稀疏先验且更换RFD;(e) 融合类内稀疏先验且更换Wise-MPDIoU;(f) 本文方法)
Fig. 7 Visualization of ablation results ((a) Original image; (b) Baseline; (c) Within-class sparse prior knowledge; (d) Within-class sparse prior knowledge and RFD; (e) Within-class sparse prior knowledge and Wise-MPDIoU; (f) Ours)
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| ODConv | 87.3 | 60.7 | 5.8 |
| HWD | 91.5 | 62.6 | 7.7 |
| WaveletPool | 91.1 | 63.4 | 7.4 |
| LDConv | 91.0 | 62.3 | 8.0 |
| RFD | 92.1 | 63.9 | 8.1 |
表3 不同下采样方式在YOLOv8中的对比结果
Table 3 Comparison results of different downsampling methods in YOLOv8
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| ODConv | 87.3 | 60.7 | 5.8 |
| HWD | 91.5 | 62.6 | 7.7 |
| WaveletPool | 91.1 | 63.4 | 7.4 |
| LDConv | 91.0 | 62.3 | 8.0 |
| RFD | 92.1 | 63.9 | 8.1 |
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| shapeIoU | 92.2 | 63.8 | 8.1 |
| focalerWIoU | 92.1 | 63.8 | 8.1 |
| SlideLoss | 91.9 | 63.8 | 8.1 |
| WIoU | 91.1 | 63.6 | 8.1 |
| MPDIoU | 92.1 | 63.7 | 8.1 |
| Wise-MPDIoU | 92.4 | 64.1 | 9.6 |
表4 多种损失函数在YOLOv8中的对比结果
Table 4 Comparison of multiple loss functions in YOLOv8
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| shapeIoU | 92.2 | 63.8 | 8.1 |
| focalerWIoU | 92.1 | 63.8 | 8.1 |
| SlideLoss | 91.9 | 63.8 | 8.1 |
| WIoU | 91.1 | 63.6 | 8.1 |
| MPDIoU | 92.1 | 63.7 | 8.1 |
| Wise-MPDIoU | 92.4 | 64.1 | 9.6 |
| 方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|
| YOLOv9 | 89.5 | 78.8 | 86.4 | 57.9 | 163.93 | 11.7 | 2.80 |
| RT-DETR | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | 56.9 | 19.90 |
| YOLOv10 | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | 8.2 | 2.70 |
| YOLOv5 | 93.7 | 83.4 | 89.7 | 56.7 | 250.00 | 4.1 | 1.80 |
| YOLOv7 | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | 13.0 | 6.00 |
| 本文方法 | 93.6 | 87.6 | 92.4 | 65.2 | 144.93 | 9.6 | 3.02 |
表5 多种主流模型的对比试验
Table 5 Comparative test of multi-medium mainstream models
| 方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|
| YOLOv9 | 89.5 | 78.8 | 86.4 | 57.9 | 163.93 | 11.7 | 2.80 |
| RT-DETR | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | 56.9 | 19.90 |
| YOLOv10 | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | 8.2 | 2.70 |
| YOLOv5 | 93.7 | 83.4 | 89.7 | 56.7 | 250.00 | 4.1 | 1.80 |
| YOLOv7 | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | 13.0 | 6.00 |
| 本文方法 | 93.6 | 87.6 | 92.4 | 65.2 | 144.93 | 9.6 | 3.02 |
图8 绝缘子热像可视化结果((a) 原图;(b) YOLOv9;(c) RT-DETR;(d) YOLOv10;(e) YOLOv5;(f) YOLOv7;(g) 本文方法)
Fig. 8 Insulator thermal image visualization results ((a) Original image; (b) YOLOv9; (c) RT-DETR; (d) YOLOv10; (e) YOLOv5; (f) YOLOv7; (g) Ours)
| [1] | 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506-5515. |
| HE J H, LUO G M, CHENG M X, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506-5515 (in Chinese). | |
| [2] | 徐舒玮, 邱才明, 张东霞, 等. 基于深度学习的输电线路故障类型辨识[J]. 中国电机工程学报, 2019, 39(1): 65-74. |
| XU S W, QIU C M, ZHANG D X, et al. A deep learning approach for fault type identification of transmission line[J]. Proceedings of the CSEE, 2019, 39(1): 65-74 (in Chinese). | |
| [3] | 赵振兵, 冯烁, 赵文清, 等. 融合知识迁移和改进YOLOv6的变电设备热像检测方法[J]. 智能系统学报, 2023, 18(6): 1213-1222. |
| ZHAO Z B, FENG S, ZHAO W Q, et al. Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J]. CAAI Transactions on Intelligent Systems, 2023, 18(6): 1213-1222 (in Chinese). | |
| [4] | 张血琴, 周志鹏, 郭裕钧, 等. 不同材质绝缘子污秽等级高光谱检测方法研究[J]. 电工技术学报, 2023, 38(7): 1946-1955. |
| ZHANG X Q, ZHOU Z P, GUO Y J, et al. Detection method of contamination grades of insulators with different materials based on hyperspectral technique[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1946-1955 (in Chinese). | |
| [5] | 赵振兵, 孔英会, 戚银城, 等. 面向智能输变电的图像处理技术[M]. 北京: 中国电力出版社, 2014: 1-4. |
| ZHAO Z B, KONG Y H, QI Y C, et al. Image processing technology for intelligent power transmission and transformation[M]. Beijing: China Electric Power Press, 2014: 1-4 (in Chinese). | |
| [6] | 刘传洋, 吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展[J]. 中国电机工程学报, 2025, 45(6): 2171-2195. |
| LIU C Y, WU Y Q. Research progress of power equipment identification and thermal fault diagnosis based on infrared images[J]. Proceedings of the CSEE, 2025, 45(6): 2171-2195 (in Chinese). | |
| [7] |
ZHENG H B, CUI Y H, YANG W Q, et al. An infrared image detection method of substation equipment combining iresgroup structure and CenterNet[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4757-4765.
DOI URL |
| [8] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1904.07850. |
| [9] |
HE H Y, HU Z, WANG B Z, et al. A contactless zero-value insulators detection method based on infrared images matching[J]. IEEE Access, 2020, 8: 133882-133889.
DOI URL |
| [10] | ZHOU S J, LIU J F, FAN X H, et al. Thermal fault diagnosis of electrical equipment in substations using lightweight convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5005709. |
| [11] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
| [12] |
YIN J G, LU Y P, GONG Z X, et al. Edge detection of high-voltage porcelain insulators in infrared image using dual parity morphological gradients[J]. IEEE Access, 2019, 7: 32728-32734.
DOI URL |
| [13] |
ZHAO Z B, FENG S, MA D Y, et al. A weakly supervised instance segmentation approach for insulator thermal images incorporating sparse prior knowledge[J]. IEEE Transactions on Power Delivery, 2024, 39(5): 2693-2703.
DOI URL |
| [14] | 赵振兵, 郭广学, 王艺衡, 等. 融合边缘感知与统计纹理知识的输电线路金具锈蚀检测[J]. 智能系统学报, 2024, 19(5): 1228-1237. |
| ZHAO Z B, GUO G X, WANG Y H, et al. Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J]. CAAI Transactions on Intelligent Systems, 2024, 19(5): 1228-1237 (in Chinese). | |
| [15] |
李刚, 蔡泽浩, 孙华勋, 等. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986.
DOI |
|
LI G, CAI Z H, SUN H X, et al. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion[J]. Journal of Graphics, 2024, 45(5): 979-986 (in Chinese).
DOI |
|
| [16] |
HAO S, AN B Y, MA X, et al. PKAMNet: a transmission line insulator parallel- gap fault detection network based on prior knowledge transfer and attention mechanism[J]. IEEE Transactions on Power Delivery, 2023, 38(5): 3387-3397.
DOI URL |
| [17] |
ZHAO Z B, LIU N, WANG L. Localization of multiple insulators by orientation angle detection and binary shape prior knowledge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3421-3428.
DOI URL |
| [18] |
ZHENG H B, SUN Y H, LIU X H, et al. Infrared image detection of substation insulators using an improved fusion single shot multibox detector[J]. IEEE Transactions on Power Delivery, 2021, 36(6): 3351-3359.
DOI URL |
| [19] |
ZHENG H B, LIU Y, SUN Y H, et al. Arbitrary-oriented detection of insulators in thermal imagery via rotation region network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5242-5252.
DOI URL |
| [20] | LIU X L, RAO Z Y, ZHANG Y X, et al. UAVs images based real-time insulator defect detection with transformer deep learning[C]// 2023 IEEE International Conference on Robotics and Biomimetics. New York: IEEE Press, 2023: 1-6. |
| [21] | GUO Z Y, ZHU T, ZHANG X Y, et al. Infrared insulator object detection algorithm based on improved deformable DETR[C]// The 10th International Forum on Electrical Engineering and Automation. New York: IEEE Press, 2023: 147-151. |
| [22] | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. (2021-05-18) [2024-11-03]. https://arxiv.org/abs/2010.04159.pdf. |
| [23] | LU W, CHEN S B, TANG J, et al. A robust feature downsampling module for remote-sensing visual tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4404312. |
| [24] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
| [25] | 李文璞, 毛颖科, 廖逍, 等. 基于旋转目标检测的变电设备红外图像电压致热型缺陷智能诊断方法[J]. 高电压技术, 2021, 47(9): 3246-3253. |
| LI W P, MAO Y K, LIAO X, et al. Intelligent diagnosis method of infrared image for substation equipment voltage type thermal defects based on rotating target detection[J]. High Voltage Engineering, 2021, 47(9): 3246-3253 (in Chinese). | |
| [26] | 王有元, 李后英, 梁玄鸿, 等. 基于红外图像的变电设备热缺陷自调整残差网络诊断模型[J]. 高电压技术, 2020, 46(9): 3000-3007. |
| WANG Y Y, LI H Y, LIANG X H, et al. Self-adjusting residual network diagnosis model for substation equipment thermal defects based on infrared image[J]. High Voltage Engineering, 2020, 46(9): 3000-3007 (in Chinese). | |
| [27] | SELVARAJU R R, DAS A, VEDANTAM R, et al. Grad-CAM: why did you say that?[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1611.07450. |
| [28] | 王海群, 魏培旭, 解浩龙, 等. 基于改进YOLOv8的红外船舶检测[J]. 电光与控制, 2025, 32(1): 61-67. |
| WANG H Q, WEI P X, XIE H L, et al. Infrared ship detection based on improved YOLOv8[J]. Electronics Optics & Control, 2025, 32(1): 61-67 (in Chinese). | |
| [29] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
|
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
| [30] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
| WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
| [31] | 易磊, 黄哲玮, 易雅雯. 改进YOLOv8的输电线路异物检测方法[J]. 电子测量技术, 2024, 47(15): 125-134. |
| YI L, HUANG Z W, YI Y W. Improved YOLOv8 foreign object detection method for transmission lines[J]. Electronic Measurement Technology, 2024, 47(15): 125-134 (in Chinese). | |
| [32] | TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-08-08) [2024-11-03]. https://arxiv.org/abs/2301.10051. |
| [33] | MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. (2024-08-20) [2024-11-03]. https://arxiv.org/abs/2307.07662. |
| [34] | HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1606.08415. |
| [35] | WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2405.14458. |
| [36] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
| [37] | LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2209.07947. |
| [38] |
XU G P, LIAO W T, ZHANG X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819.
DOI URL |
| [39] | NING J L, SPRATLING M. The importance of anti-aliasing in tiny object detection[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2310.14221. |
| [40] |
ZHANG X, SONG Y Z, SONG T T, et al. LDConv: linear deformable convolution for improving convolutional neural networks[J]. Image and Vision Computing, 2024, 149: 105190.
DOI URL |
| [41] | ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. [2024-04-01]. https://arxiv.org/abs/2312.17663. |
| [42] | ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2401.10525. |
| [43] |
YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
DOI URL |
| [44] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL]. [2024-08-20]. https://doi.org/10.48550/arXiv.2402.13616. |
| [1] | 琚晨, 丁嘉欣, 王泽兴, 李广钊, 管振祥, 张常有. 面向有限元法的图神经网络形函数近似方法[J]. 图学学报, 2025, 46(6): 1161-1171. |
| [2] | 易斌, 张立斌, 刘丹楹, 唐军, 方俊俊, 李雯琦. 基于AMTA-Net的卷制过程激光打孔通风率预测模型[J]. 图学学报, 2025, 46(6): 1224-1232. |
| [3] | 薄文, 琚晨, 刘维青, 张焱, 胡晶晶, 程婧晗, 张常有. 基于退化感知时序建模的装备维保时机预测方法[J]. 图学学报, 2025, 46(6): 1233-1246. |
| [4] | 贺蒙蒙, 张小艳, 李洪安. 基于Mamba结构的轻量级皮肤病变图像分割网络[J]. 图学学报, 2025, 46(6): 1257-1266. |
| [5] | 李星辰, 李宗民, 杨超智. 基于可信伪标签微调的测试时适应算法[J]. 图学学报, 2025, 46(6): 1292-1303. |
| [6] | 樊乐翔, 马冀, 周登文. 基于退化分离的轻量级盲超分辨率重建网络[J]. 图学学报, 2025, 46(6): 1304-1315. |
| [7] | 王海涵. 基于YOLOv8-OSRA的钢拱塔表观病害多目标检测方法[J]. 图学学报, 2025, 46(6): 1327-1336. |
| [8] | 翟永杰, 翟邦朝, 胡哲东, 杨珂, 王乾铭, 赵晓瑜. 基于自适应特征融合金字塔与注意力机制的输电线路绝缘子缺陷检测方法[J]. 图学学报, 2025, 46(5): 950-959. |
| [9] | 朱泓淼, 钟国杰, 张严辞. 基于均值漂移与深度学习融合的小语义点云语义分割[J]. 图学学报, 2025, 46(5): 998-1009. |
| [10] | 郭瑞东, 蓝贵文, 范冬林, 钟展, 徐梓睿, 任新月. 基于特征聚焦扩散网络的电力巡检目标检测算法[J]. 图学学报, 2025, 46(4): 719-726. |
| [11] | 汪子宇, 曹维维, 曹玉柱, 刘猛, 陈俊, 刘兆邦, 郑健. 基于类内区域动态解耦的半监督肺气管分割[J]. 图学学报, 2025, 46(4): 763-774. |
| [12] | 王道累, 丁子健, 杨君, 郑劭恺, 朱瑞, 赵文彬. 基于体素网格特征的NeRF大场景重建方法[J]. 图学学报, 2025, 46(3): 502-509. |
| [13] | 孙浩, 谢滔, 何龙, 郭文忠, 虞永方, 吴其军, 王建伟, 东辉. 多模态文本视觉大模型机器人地形感知算法研究[J]. 图学学报, 2025, 46(3): 558-567. |
| [14] | 张立立, 杨康, 张珂, 魏薇, 李晶, 谭洪鑫, 张翔宇. 面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究[J]. 图学学报, 2025, 46(2): 249-258. |
| [15] | 翟永杰, 王璐瑶, 赵晓瑜, 胡哲东, 王乾铭, 王亚茹. 基于级联查询-位置关系的输电线路多金具检测方法[J]. 图学学报, 2025, 46(2): 288-299. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||