图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1257-1266.DOI: 10.11996/JG.j.2095-302X.2025061257
收稿日期:2025-02-12
接受日期:2025-06-06
出版日期:2025-12-30
发布日期:2025-12-27
通讯作者:张小艳(1967-),女,教授,硕士。主要研究方向为图形图像处理、计算机视觉。E-mail:1161880978@qq.com第一作者:贺蒙蒙(1999-),女,硕士研究生。主要研究方向为医学图像分割。E-mail:22208223093@stu.xust.edu.cn
基金资助:
HE Mengmeng(
), ZHANG Xiaoyan(
), LI Hongan
Received:2025-02-12
Accepted:2025-06-06
Published:2025-12-30
Online:2025-12-27
First author:HE Mengmeng (1999-), master student. Her main research interest covers medical image segmentation. E-mail:22208223093@stu.xust.edu.cn
Supported by:摘要:
皮肤病变分割是医学图像分析中的一项重要任务,对于皮肤类疾病的早期诊断和治疗具有重要意义。然而,在处理高分辨率皮肤图像和捕捉细微病变特征时,现有模型仍面临着计算复杂度高以及冗余信息处理不足等挑战。为此,提出一种基于Mamba结构的轻量级皮肤病变图像分割网络ResMamba,采用六级U型结构,主要通过将Mamba嵌入到视觉状态空间中同时引入到编解码器中,ResVSS模块作为编码器的核心组成部分,通过删除冗余线性层可减少参数量,同时结合深度卷积块和可学习尺度参数对残差连接进行缩放,从而通过降低模型复杂度来提升分割精度。在跳跃连接模块使用多级、多尺度信息融合模块生成空间和通道注意力图,有效融合了多尺度信息。通过在公开皮肤数据集ISIC2017和ISIC2018上进行实验验证,结果表明,ResMamba模型在平衡参数数量和分割性能方面都具有较好的分割性能,验证了该模型的有效性。
中图分类号:
贺蒙蒙, 张小艳, 李洪安. 基于Mamba结构的轻量级皮肤病变图像分割网络[J]. 图学学报, 2025, 46(6): 1257-1266.
HE Mengmeng, ZHANG Xiaoyan, LI Hongan. Lightweight skin lesion image segmentation network based on Mamba structure[J]. Journal of Graphics, 2025, 46(6): 1257-1266.
图1 ResMamba网络模型结构图((a) 本文模型;(b) 跳跃连接路径的多阶段和多尺度信息融合模块结构)
Fig. 1 Structure diagram of the ResMamba network model ((a) The model in this paper; (b) Multi-stage and multi-scale information fusion module structure of skip connection paths)
| Dateset | Train | Valid | Test | Total |
|---|---|---|---|---|
| ISIC2017 | 2 000 | 150 | 600 | 2 750 |
| ISIC2018 | 1 815 | 259 | 520 | 2 594 |
表1 ISIC2017和ISIC2018数据集上训练集、验证集和测试集分割图像数据
Table 1 Training set, validation set and test set segmented image data on ISIC2017 and ISIC2018 datasets
| Dateset | Train | Valid | Test | Total |
|---|---|---|---|---|
| ISIC2017 | 2 000 | 150 | 600 | 2 750 |
| ISIC2018 | 1 815 | 259 | 520 | 2 594 |
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.29 | 83.95 | 95.65 | 86.82 | 97.28 |
| TransFuse | 26.270 | 11.530 | 79.21 | 88.40 | 96.17 | 87.14 | 97.98 |
| MALUNet | 0.175 | 0.083 | 78.78 | 88.13 | 96.18 | 84.78 | 98.47 |
| VM-UNet | 27.430 | 4.112 | 80.23 | 89.03 | 96.62 | 86.89 | 97.45 |
| VM-UNetV2 | 12.380 | 2.473 | 81.34 | 89.73 | 96.85 | 87.39 | 97.38 |
| LightM-UNet | 1.270 | 0.267 | 82.18 | 90.22 | 96.70 | 88.73 | 98.67 |
| ResMamba (Ours) | 0.043 | 0.059 | 83.89 | 89.95 | 96.99 | 89.21 | 98.73 |
表2 不同方法在ISIC2017数据集上的实验结果
Table 2 Experimental results of different methods on ISIC2017 dataset
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.29 | 83.95 | 95.65 | 86.82 | 97.28 |
| TransFuse | 26.270 | 11.530 | 79.21 | 88.40 | 96.17 | 87.14 | 97.98 |
| MALUNet | 0.175 | 0.083 | 78.78 | 88.13 | 96.18 | 84.78 | 98.47 |
| VM-UNet | 27.430 | 4.112 | 80.23 | 89.03 | 96.62 | 86.89 | 97.45 |
| VM-UNetV2 | 12.380 | 2.473 | 81.34 | 89.73 | 96.85 | 87.39 | 97.38 |
| LightM-UNet | 1.270 | 0.267 | 82.18 | 90.22 | 96.70 | 88.73 | 98.67 |
| ResMamba (Ours) | 0.043 | 0.059 | 83.89 | 89.95 | 96.99 | 89.21 | 98.73 |
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.56 | 84.75 | 94.05 | 85.86 | 96.69 |
| TransFuse | 26.270 | 11.530 | 80.63 | 89.27 | 95.66 | 89.28 | 95.74 |
| MALUNet | 0.175 | 0.083 | 80.25 | 89.04 | 95.62 | 89.64 | 96.19 |
| VM-UNet | 27.430 | 4.112 | 81.35 | 89.71 | 96.19 | 88.49 | 96.93 |
| VM-UNetV2 | 12.380 | 2.473 | 81.37 | 89.73 | 96.37 | 87.75 | 97.61 |
| LightM-UNet | 1.270 | 0.267 | 82.71 | 89.32 | 96.83 | 89.69 | 97.89 |
| ResMamba (Ours) | 0.043 | 0.059 | 84.37 | 90.21 | 97.04 | 89.62 | 97.92 |
表3 不同方法在ISIC2018数据集上的实验结果
Table 3 Experimental results of different methods on ISIC2018 dataset
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.56 | 84.75 | 94.05 | 85.86 | 96.69 |
| TransFuse | 26.270 | 11.530 | 80.63 | 89.27 | 95.66 | 89.28 | 95.74 |
| MALUNet | 0.175 | 0.083 | 80.25 | 89.04 | 95.62 | 89.64 | 96.19 |
| VM-UNet | 27.430 | 4.112 | 81.35 | 89.71 | 96.19 | 88.49 | 96.93 |
| VM-UNetV2 | 12.380 | 2.473 | 81.37 | 89.73 | 96.37 | 87.75 | 97.61 |
| LightM-UNet | 1.270 | 0.267 | 82.71 | 89.32 | 96.83 | 89.69 | 97.89 |
| ResMamba (Ours) | 0.043 | 0.059 | 84.37 | 90.21 | 97.04 | 89.62 | 97.92 |
图4 ISIC2017 (前3行)和ISIC2018 (后3行)数据集分割可视化展示
Fig. 4 ISIC2017 (first three rows) and ISIC2018 (last three rows) dataset segmentation visualizations are shown ((a) Original image; (b) Ground Truth; (c) U-Net; (d) Transfuse; (e) MALUNet; (f) VM-UNet; (g) VM-UNetV2; (h) LightM-UNet; (i) ResMamba (Ours))
图7 ISIC2017数据集消融实验分割可视化展示
Fig. 7 ISIC2017 dataset ablation study segmentation visualizations are shown ((a) Original image; (b) Ground Truth; (c) U-Net; (d) U-Net+SAB+CAB; (e) U-Net+RM Layer; (f) ResMamba (Ours))
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.29 | 83.95 | 95.66 | 86.82 | 97.28 |
| U-Net+SAB+CAB | 10.890 | 6.365 | 80.32 | 88.74 | 96.01 | 87.83 | 97.96 |
| U-Net+RM Layer | 0.127 | 0.074 | 81.49 | 89.06 | 96.04 | 89.05 | 98.34 |
| ResMamba (Ours) | 0.043 | 0.059 | 83.89 | 89.95 | 96.99 | 89.21 | 98.73 |
表4 消融实验结果
Table 4 Results of ablation experiments
| Model | Params/M | GFLOPs | mIoU↑ | DSC↑ | ACC↑ | Sen↑ | Spe↑ |
|---|---|---|---|---|---|---|---|
| U-Net | 7.770 | 13.780 | 79.29 | 83.95 | 95.66 | 86.82 | 97.28 |
| U-Net+SAB+CAB | 10.890 | 6.365 | 80.32 | 88.74 | 96.01 | 87.83 | 97.96 |
| U-Net+RM Layer | 0.127 | 0.074 | 81.49 | 89.06 | 96.04 | 89.05 | 98.34 |
| ResMamba (Ours) | 0.043 | 0.059 | 83.89 | 89.95 | 96.99 | 89.21 | 98.73 |
| [1] | 文思佳, 张栋, 赵伟强, 等. 融合CNN-Transformer的医学图像分割网络[J]. 计算机与数字工程, 2024, 52(8): 2452-2456. |
| WEN S J, ZHANG D, ZHAO W Q, et al. Medical image segmentation network integrated with CNN-Transformer[J]. Computer and Digital Engineering, 2024, 52(8): 2452-2456 (in Chinese). | |
| [2] |
FAN Y Z, SONG J H, YUAN L, et al. HCT-Unet: multi-target medical image segmentation via a hybrid CNN-Transformer Unet incorporating multi-axis gated multi-layer perceptron[J]. The Visual Computer, 2024, 41(5): 3457-3472.
DOI |
| [3] | 熊岚堃, 张桂梅, 刘晖群, 等. 结合轴向增强Transformer与CNN双编码的医学图像分割方法[EB/OL]. (2025-02-06) [2025-02-08]. http://kns.cnki.net/kcms/detail/11.2925.TP.2025 0206.1623.033.html. |
| XIONG L K, ZHANG G M, LIU H Q, et al. Combination of axial enhanced Transformer and CNN network for medical image segmentation[EB/OL]. (2025-02-06) [2025-02-08]. http://kns.cnki.net/kcms/detail/11.2925.TP.2025 0206.1623.033.html. (in Chinese). | |
| [4] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
| [5] | 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和U-Net网络的医学图像分割[J]. 图学学报, 2022, 43(2): 273-278. |
|
LI C Y, BAI J, ZHENG L. A U-Net based contour enhanced attention for medical image segmentation[J]. Journal of Graphics, 2022, 43(2): 273-278 (in Chinese).
DOI |
|
| [6] | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08) [2024-08-04]. https://arxiv.org/abs/2102.04306. |
| [7] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03) [2024-08-04]. https://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#DosovitskiyB0WZ21. |
| [8] | ZHANG Y D, LIU H Y, HU Q. Transfuse: fusing transformers and CNNs for medical image segmentation[C]// The 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2021: 14-24. |
| [9] | CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2023: 205-218. |
| [10] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9992-10002. |
| [11] | GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[EB/OL]. (2023-12-01) [2024-08-04]. https://arxiv.org/abs/2312.00752. |
| [12] | MA J, LI F, WANG B. U-mamba: enhancing long-range dependency for biomedical image segmentation[EB/OL]. (2024-01-09) [2024-08-04]. https://arxiv.org/abs/2401.04722. |
| [13] | LIU Y, TIAN Y J, ZHAO Y Z, et al. VMamba: visual state space model[EB/OL]. (2024-01-18) [2024-08-04]. https://proceedings.neurips.cc//paper_files/paper/2024/hash/baa2da9ae4bfed26520bb61d259a3653-Abstract-Conference.html. |
| [14] | RUAN J C, XIANG S C. VM-UNet: vision mamba UNet for medical image segmentation[EB/OL]. (2024-02-04) [2024-08-31]. https://arxiv.org/abs/2402.02491v1. |
| [15] | ZHANG M Y, YU Y, JIN S, et al. VM-UNET-V2: rethinking vision mamba UNet for medical image segmentation[C]// The 20th International Symposium on Bioinformatics Research and Applications. Cham: Springer, 2024: 335-346. |
| [16] | WANG Z Y, ZHENG J Q, ZHANG Y C, et al. Mamba-UNet: UNet like pure visual mamba for medical image segmentation[EB/OL]. (2024-02-07) [2024-08-31]. https://arxiv.org/abs/2402.05079. |
| [17] | LIAO W B, ZHU Y H, WANG X Y, et al. LightM-UNet: mamba assists in lightweight UNet for medical image segmentation[EB/OL]. (2024-03-08) [2024-08-31]. https://arxiv.org/abs/2403.05246. |
| [18] |
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
DOI URL |
| [19] | GU A, GOEL K, RÉ C. Efficiently modeling long sequences with structured state spaces[EB/OL]. (2021-10-31) [2024-08-31]. https://dblp.uni-trier.de/db/conf/iclr/iclr2022.html#GuGR22. |
| [20] | GU A, DAO T, ERMON S, et al. HiPPO: recurrent memory with optimal polynomial projections[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 125. |
| [21] | RUAN J C, XIANG S C, XIE M Y, et al. MALUNet: a multi-attention and light-weight UNet for skin lesion segmentation[C]// 2022 IEEE International Conference on Bioinformatics and Biomedicine. New York: IEEE Press, 2022: 1150-1156. |
| [22] | CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]// The 15th IEEE International symposium on biomedical imaging. New York: IEEE Press, 2018: 168-172. |
| [23] | CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018:A challenge hosted by the international skin imaging collaboration (ISIC)[EB/OL]. (2019-02-09) [2024-06-04]. https://arxiv.org/abs/1902.03368. |
| [1] | 琚晨, 丁嘉欣, 王泽兴, 李广钊, 管振祥, 张常有. 面向有限元法的图神经网络形函数近似方法[J]. 图学学报, 2025, 46(6): 1161-1171. |
| [2] | 易斌, 张立斌, 刘丹楹, 唐军, 方俊俊, 李雯琦. 基于AMTA-Net的卷制过程激光打孔通风率预测模型[J]. 图学学报, 2025, 46(6): 1224-1232. |
| [3] | 薄文, 琚晨, 刘维青, 张焱, 胡晶晶, 程婧晗, 张常有. 基于退化感知时序建模的装备维保时机预测方法[J]. 图学学报, 2025, 46(6): 1233-1246. |
| [4] | 赵振兵, 欧阳文斌, 冯烁, 李浩鹏, 马隽. 基于类内稀疏先验与改进YOLOv8的绝缘子红外图像检测方法[J]. 图学学报, 2025, 46(6): 1247-1256. |
| [5] | 李星辰, 李宗民, 杨超智. 基于可信伪标签微调的测试时适应算法[J]. 图学学报, 2025, 46(6): 1292-1303. |
| [6] | 樊乐翔, 马冀, 周登文. 基于退化分离的轻量级盲超分辨率重建网络[J]. 图学学报, 2025, 46(6): 1304-1315. |
| [7] | 王海涵. 基于YOLOv8-OSRA的钢拱塔表观病害多目标检测方法[J]. 图学学报, 2025, 46(6): 1327-1336. |
| [8] | 朱泓淼, 钟国杰, 张严辞. 基于均值漂移与深度学习融合的小语义点云语义分割[J]. 图学学报, 2025, 46(5): 998-1009. |
| [9] | 杨杰, 李琮, 胡庆浩, 陈显达, 王云鹏, 刘晓晶. 面向轻量卷积神经网络的训练后量化方法[J]. 图学学报, 2025, 46(4): 709-718. |
| [10] | 汪子宇, 曹维维, 曹玉柱, 刘猛, 陈俊, 刘兆邦, 郑健. 基于类内区域动态解耦的半监督肺气管分割[J]. 图学学报, 2025, 46(4): 763-774. |
| [11] | 王道累, 丁子健, 杨君, 郑劭恺, 朱瑞, 赵文彬. 基于体素网格特征的NeRF大场景重建方法[J]. 图学学报, 2025, 46(3): 502-509. |
| [12] | 孙浩, 谢滔, 何龙, 郭文忠, 虞永方, 吴其军, 王建伟, 东辉. 多模态文本视觉大模型机器人地形感知算法研究[J]. 图学学报, 2025, 46(3): 558-567. |
| [13] | 翟永杰, 王璐瑶, 赵晓瑜, 胡哲东, 王乾铭, 王亚茹. 基于级联查询-位置关系的输电线路多金具检测方法[J]. 图学学报, 2025, 46(2): 288-299. |
| [14] | 潘树焱, 刘立群. MSFAFuse:基于多尺度特征信息与注意力机制的SAR和可见光图像融合模型[J]. 图学学报, 2025, 46(2): 300-311. |
| [15] | 张天圣, 朱闽峰, 任怡雯, 王琛涵, 张立冬, 张玮, 陈为. BPA-SAM:面向工笔画数据的SAM边界框提示增强方法[J]. 图学学报, 2025, 46(2): 322-331. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||