欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1257-1266.DOI: 10.11996/JG.j.2095-302X.2025061257

• 图像处理与计算机视觉 • 上一篇    下一篇

基于Mamba结构的轻量级皮肤病变图像分割网络

贺蒙蒙(), 张小艳(), 李洪安   

  1. 西安科技大学计算机科学与技术学院陕西 西安 710054
  • 收稿日期:2025-02-12 接受日期:2025-06-06 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:张小艳(1967-),女,教授,硕士。主要研究方向为图形图像处理、计算机视觉。E-mail:1161880978@qq.com
  • 第一作者:贺蒙蒙(1999-),女,硕士研究生。主要研究方向为医学图像分割。E-mail:22208223093@stu.xust.edu.cn
  • 基金资助:
    新一代人工智能国家科技重大专项(2022ZD0119005)

Lightweight skin lesion image segmentation network based on Mamba structure

HE Mengmeng(), ZHANG Xiaoyan(), LI Hongan   

  1. School of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China
  • Received:2025-02-12 Accepted:2025-06-06 Published:2025-12-30 Online:2025-12-27
  • First author:HE Mengmeng (1999-), master student. Her main research interest covers medical image segmentation. E-mail:22208223093@stu.xust.edu.cn
  • Supported by:
    National Science and Technology Major Project of New Generation Artificial Intelligence(2022ZD0119005)

摘要:

皮肤病变分割是医学图像分析中的一项重要任务,对于皮肤类疾病的早期诊断和治疗具有重要意义。然而,在处理高分辨率皮肤图像和捕捉细微病变特征时,现有模型仍面临着计算复杂度高以及冗余信息处理不足等挑战。为此,提出一种基于Mamba结构的轻量级皮肤病变图像分割网络ResMamba,采用六级U型结构,主要通过将Mamba嵌入到视觉状态空间中同时引入到编解码器中,ResVSS模块作为编码器的核心组成部分,通过删除冗余线性层可减少参数量,同时结合深度卷积块和可学习尺度参数对残差连接进行缩放,从而通过降低模型复杂度来提升分割精度。在跳跃连接模块使用多级、多尺度信息融合模块生成空间和通道注意力图,有效融合了多尺度信息。通过在公开皮肤数据集ISIC2017和ISIC2018上进行实验验证,结果表明,ResMamba模型在平衡参数数量和分割性能方面都具有较好的分割性能,验证了该模型的有效性。

关键词: 深度学习, 皮肤病变分割, Mamba结构, 状态空间模型, 轻量化

Abstract:

Segmentation of skin lesions is an important task in medical image analysis, and is of great significance for the early diagnosis and treatment of skin diseases. However, when processing high-resolution skin images and capturing subtle lesion features, existing models still face challenges such as high computational complexity and insufficient processing of redundant information. To address this end, a lightweight skin lesion image segmentation network based on the Mamba structure was proposed, ResMamba adopted a six-level U-shaped structure, embedding Mamba into the visual state space and introducing it into the codec. The ResVSS module, as the core component of the encoder, reduced the number of parameters by removing a redundant linear layer, and at the same time combined the deep convolution block and learnable scale parameters to scale the residual connection, thereby reducing the complexity of the model while improving the segmentation accuracy. In the hopping connection module, a multi-level multi-scale information fusion module was used to generate spatial and channel attention maps, which effectively fused multi-scale information. Through experimental verification on the public skin dataset ISIC2017 and ISIC2018, the results demonstrated that the ResMamba model achieved good segmentation performance in terms of the number of balance parameters and segmentation performance, thus verifying the effectiveness of the model.

Key words: deep learning, skin lesion segmentation, mamba structure, state space models, lightweight

中图分类号: