Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 346-356.DOI: 10.11996/JG.j.2095-302X.2023020346
Previous Articles Next Articles
ZHANG Wei-kang(), SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui(
)
Received:
2022-07-11
Accepted:
2022-09-07
Online:
2023-04-30
Published:
2023-05-01
Contact:
DONG Hui (1985-), professor, Ph.D. Her main research interests cover image processing and machine learning, etc. E-mail:About author:
ZHANG Wei-kang (1997-), master student. His main research interests cover robotics and object detection. E-mail:wkzhang7167@163.com
Supported by:
CLC Number:
ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot[J]. Journal of Graphics, 2023, 44(2): 346-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020346
配置名称 | 版本参数 |
---|---|
操作系统 | Ubuntu18.04 |
CPU | Intel(R)Core(TM)i9-10920X |
内存 | 32 G |
GPU | NVIDIA GeForce RTX3070 |
深度学习框架 | Pytorch1.8.0 |
Table 1 Experiment platform configuration
配置名称 | 版本参数 |
---|---|
操作系统 | Ubuntu18.04 |
CPU | Intel(R)Core(TM)i9-10920X |
内存 | 32 G |
GPU | NVIDIA GeForce RTX3070 |
深度学习框架 | Pytorch1.8.0 |
Model | P (%) | R (%) | mAP (%) | 参数量(MB) | 时间(ms·fps-1) |
---|---|---|---|---|---|
Faster R-CNN | 92.5 | 79.4 | 89.9 | 113.6 | 73 |
SSD | 92.1 | 80.9 | 88.8 | 97.1 | 35 |
EfficientDet | 93.6 | 77.4 | 85.4 | 20.8 | 44 |
RetinaNet | 93.5 | 74.8 | 82.6 | 146.0 | 52 |
YOLOv3 | 90.4 | 78.9 | 86.7 | 246.5 | 38 |
YOLOv4 | 91.4 | 83.3 | 90.5 | 256.3 | 33 |
YOLOv5 | 90.3 | 87.1 | 92.5 | 14.4 | 9 |
YOLOv5-CBTR | 94.5 | 93.1 | 95.7 | 16.1 | 11 |
Table 2 Comparison results of performance indicators of different algorithms
Model | P (%) | R (%) | mAP (%) | 参数量(MB) | 时间(ms·fps-1) |
---|---|---|---|---|---|
Faster R-CNN | 92.5 | 79.4 | 89.9 | 113.6 | 73 |
SSD | 92.1 | 80.9 | 88.8 | 97.1 | 35 |
EfficientDet | 93.6 | 77.4 | 85.4 | 20.8 | 44 |
RetinaNet | 93.5 | 74.8 | 82.6 | 146.0 | 52 |
YOLOv3 | 90.4 | 78.9 | 86.7 | 246.5 | 38 |
YOLOv4 | 91.4 | 83.3 | 90.5 | 256.3 | 33 |
YOLOv5 | 90.3 | 87.1 | 92.5 | 14.4 | 9 |
YOLOv5-CBTR | 94.5 | 93.1 | 95.7 | 16.1 | 11 |
Model | CBAM | Transformer | P (%) | R (%) | mAP (%) |
---|---|---|---|---|---|
YOLOv5 | - | - | 90.3 | 87.1 | 92.5 |
√ | - | 93.8 | 91.3 | 94.2 | |
- | √ | 92.6 | 90.7 | 93.8 | |
√ | √ | 94.5 | 93.1 | 95.7 |
Table 3 Ablation experimental results
Model | CBAM | Transformer | P (%) | R (%) | mAP (%) |
---|---|---|---|---|---|
YOLOv5 | - | - | 90.3 | 87.1 | 92.5 |
√ | - | 93.8 | 91.3 | 94.2 | |
- | √ | 92.6 | 90.7 | 93.8 | |
√ | √ | 94.5 | 93.1 | 95.7 |
[1] |
KHAN S, TUFAIL M, KHAN M T, et al. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer[J]. Precision Agriculture, 2021, 22(6): 1711-1727.
DOI |
[2] | 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228, 247. |
JIANG H H, ZHANG C Y, ZHANG Z, et al. Detection method of corn weed based on mask R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228, 247. (in Chinese) | |
[3] |
COLEMAN G, SALTER W, WALSH M. OpenWeedLocator (OWL): an open-source, low-cost device for fallow weed detection[J]. Scientific Reports, 2022, 12: 170.
DOI PMID |
[4] | MCCOOL C, BEATTIE J, FIRN J, et al. Efficacy of mechanical weeding tools: a study into alternative weed management strategies enabled by robotics[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 1184-1190. |
[5] |
LI Y, GUO Z Q, SHUANG F, et al. Key technologies of machine vision for weeding robots: a review and benchmark[J]. Computers and Electronics in Agriculture, 2022, 196: 106880.
DOI URL |
[6] | 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245, 303. |
MENG Q K, ZHANG M, YANG X X, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303. (in Chinese) | |
[7] |
NGUYEN THANH LE V, APOPEI B, ALAMEH K. Effective plant discrimination based on the combination of local binary pattern operators and multiclass support vector machine methods[J]. Information Processing in Agriculture, 2019, 6(1): 116-131.
DOI URL |
[8] | CHEN Y J, WU Z N, ZHAO B, et al. Weed and corn seedling detection in field based on multi feature fusion and support vector machine[J]. Sensors: Basel, Switzerland, 2020, 21(1): 212. |
[9] | 温德圣, 许燕, 周建平, 等. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文, 2020, 15(3): 287-292. |
WEN D S, XU Y, ZHOU J P, et al. Weed identification method based on deep convolutional neural network and color migration under the influence of natural illumination[J]. China Sciencepaper, 2020, 15(3): 287-292. (in Chinese) | |
[10] |
TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279.
DOI URL |
[11] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[12] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[13] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[14] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787. |
[15] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[16] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-05-02]. https://arxiv.org/abs/1804.02767. |
[17] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-05-02]. https://arxiv.org/abs/2004.10934. |
[18] |
YING B Y, XU Y C, ZHANG S, et al. Weed detection in images of carrot fields based on improved YOLOv4[J]. Traitement Du Signal, 2021, 38(2): 341-348.
DOI URL |
[19] | 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34. |
FAN X P, ZHOU J P, XU Y, et al. Identification and localization of weeds based on optimized faster R-CNN in cotton seedling stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34. (in Chinese) | |
[20] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[21] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[22] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2117-2125. |
[23] | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 658-666. |
[24] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV2018. Cham: Springer International Publishing, 2018: 3-19. |
[25] | 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J/OL]. 航空学报, 2022: 1-15. [2022- 05-11]. https://kns.cnki.net/kcms/detail/11.1929.V.20220509.2316.010.html. |
FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J/OL]. Acta Aeronautica et Astronautica Sinica, 2022: 1-15. [2022-05-11]. . (in Chinese) | |
[26] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2022-05-02]. https://arxiv.org/abs/2010.11929. |
[27] | 吴兰兰, 熊利荣, 彭辉. 基于RGB植被指数的大田油菜图像分割定量评价[J]. 华中农业大学学报, 2019, 38(2): 109-113. |
WU L L, XIONG L R, PENG H. Quantitative evaluation of in-field rapeseed image segmentation based on RGB vegetation indices[J]. Journal of Huazhong Agricultural University, 2019, 38(2): 109-113. (in Chinese) | |
[28] | ELSTONE L, HOW K Y, BRODIE S, et al. High speed crop and weed identification in lettuce fields for precision weeding[J]. Sensors: Basel, Switzerland, 2020, 20(2): 455. |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang.
Multi-class defect target detection method for transmission lines
based on TR-YOLOv5
[J]. Journal of Graphics, 2023, 44(4): 667-676.
|
[3] |
LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua.
Content semantics and style features match consistent
artistic style transfer
[J]. Journal of Graphics, 2023, 44(4): 699-709.
|
[4] |
YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping.
Monocular depth estimation based on Laplacian
pyramid with attention fusion
[J]. Journal of Graphics, 2023, 44(4): 728-738.
|
[5] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[6] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[7] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[8] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[9] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[10] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[11] | XIE Guo-bo, HE Di-xuan, HE Yu-qin, LIN Zhi-yi. P-CenterNet for chimney detection in optical remote-sensing images [J]. Journal of Graphics, 2023, 44(2): 233-240. |
[12] | XIONG Ju-ju, XU Yang, FAN Run-ze, SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. |
[13] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
[14] | CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. |
[15] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||