Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1313-1327.DOI: 10.11996/JG.j.2095-302X.2024061313
• Image Processing and Computer Vision • Previous Articles Next Articles
LI Shengtao(), HOU Liqun(
), DONG Yasong
Received:
2024-07-23
Accepted:
2024-09-26
Online:
2024-12-31
Published:
2024-12-24
Contact:
HOU Liqun
About author:
First author contact:LI Shengtao (1998-), master student. His main research interests cover image processing and deep learning. E-mail:lst18315889026@163.com
Supported by:
CLC Number:
LI Shengtao, HOU Liqun, DONG Yasong. Automatic reading of pointer meters based on R-YOLOv7 and MIMO-CTFNet[J]. Journal of Graphics, 2024, 45(6): 1313-1327.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061313
Fig. 9 Submodule structure diagram of LGFEM module ((a) AU module structure; (b) ARB module structure; (c) MDTA module structure; (d) GDFN module structure)
Fig. 12 Spatial aggregation of scale values ((a) Numbers and decimal points detection results; (b) Results of combining number boxes and calculating scale values)
Fig. 14 Schematic diagram for adding or deleting scale lines ((a) Schematic diagram of the center point of the missing or extra part of the scale line; (b) Adding or deleting scale center point results)
参数 | 配置 |
---|---|
操作系统 | Ubuntu20.04 |
CPU型号 | Intel(R) Xeon(R) Platinum 8255C |
显卡(GPU)型号 | NVIDIA GeForce RTX2080Ti |
显卡内存 | 11 G |
深度学习框架 | Pytorch 1.10.0 |
编程语言 | Python 3.8 |
Table 1 Experimental environment parameters
参数 | 配置 |
---|---|
操作系统 | Ubuntu20.04 |
CPU型号 | Intel(R) Xeon(R) Platinum 8255C |
显卡(GPU)型号 | NVIDIA GeForce RTX2080Ti |
显卡内存 | 11 G |
深度学习框架 | Pytorch 1.10.0 |
编程语言 | Python 3.8 |
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | PSNR/ dB | SSIM |
---|---|---|---|---|---|
Baseline | 6.8 | 63.75 | 30.35 | 30.63 | 0.924 7 |
Baseline+A | 12.3 | 104.18 | 126.45 | 31.81 | 0.931 5 |
Baseline+B | 3.8 | 36.42 | 106.87 | 32.49 | 0.930 4 |
Baseline+A+B | 9.3 | 76.85 | 251.78 | 33.05 | 0.935 3 |
Table 2 Comparison of the performance of different improvement strategies
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | PSNR/ dB | SSIM |
---|---|---|---|---|---|
Baseline | 6.8 | 63.75 | 30.35 | 30.63 | 0.924 7 |
Baseline+A | 12.3 | 104.18 | 126.45 | 31.81 | 0.931 5 |
Baseline+B | 3.8 | 36.42 | 106.87 | 32.49 | 0.930 4 |
Baseline+A+B | 9.3 | 76.85 | 251.78 | 33.05 | 0.935 3 |
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | PSNR/ dB | SSIM |
---|---|---|---|---|---|
MIMO-UNet | 6.80 | 63.75 | 30.35 | 30.63 | 0.924 7 |
MIMO-UNet+ | 16.10 | 150.72 | 48.82 | 30.95 | 0.930 8 |
SFNet | 13.27 | 125.43 | 252.18 | 31.09 | 0.934 7 |
Ours | 9.30 | 76.85 | 251.78 | 33.05 | 0.935 3 |
Table 3 Comparison of the performance of different algorithms
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | PSNR/ dB | SSIM |
---|---|---|---|---|---|
MIMO-UNet | 6.80 | 63.75 | 30.35 | 30.63 | 0.924 7 |
MIMO-UNet+ | 16.10 | 150.72 | 48.82 | 30.95 | 0.930 8 |
SFNet | 13.27 | 125.43 | 252.18 | 31.09 | 0.934 7 |
Ours | 9.30 | 76.85 | 251.78 | 33.05 | 0.935 3 |
Fig. 19 Comparison of image restoration results of various algorithms ((a) Blurry picture; (b) MIMO-UNet; (c) MIMO-UNet+; (d) SFNet; (e) Ours; (f) Clear picture)
算法 | 参数量/M | FLOPs/G | ADT/ms |
---|---|---|---|
Model 1 | 37.28 | 105.37 | 18.00 |
Model 2 | 38.22 | 107.80 | 18.18 |
Model 3 | 38.38 | 109.00 | 18.63 |
Model 4 | 12.00 | 60.30 | 17.04 |
Table4 Comparison of number of parameters, operations and average reasoning time for different improved strategies
算法 | 参数量/M | FLOPs/G | ADT/ms |
---|---|---|---|
Model 1 | 37.28 | 105.37 | 18.00 |
Model 2 | 38.22 | 107.80 | 18.18 |
Model 3 | 38.38 | 109.00 | 18.63 |
Model 4 | 12.00 | 60.30 | 17.04 |
目标类别 | mAP50:95 | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
scale | 62.9 | 80.7 | 83.0 | 82.4 |
pointer | 24.6 | 91.0 | 93.2 | 91.9 |
R_pointer | 47.3 | 90.3 | 93.7 | 90.6 |
0 | 71.7 | 85.3 | 87.3 | 86.5 |
1 | 71.3 | 81.6 | 83.1 | 82.8 |
2 | 79.6 | 86.6 | 88.4 | 88.6 |
3 | 81.5 | 87.7 | 88.9 | 89.8 |
4 | 85.4 | 88.1 | 89.3 | 88.5 |
5 | 81.4 | 86.9 | 88.3 | 87.7 |
6 | 84.6 | 88.2 | 89.6 | 89.4 |
7 | 84.4 | 89.4 | 89.8 | 94.8 |
8 | 86.2 | 90.5 | 91.3 | 91.2 |
9 | 86.3 | 89.6 | 91.3 | 94.2 |
point | 48.4 | 50.3 | 54.6 | 53.0 |
centre | 82.7 | 85.1 | 86.4 | 86.1 |
all | 71.9 | 84.8 | 86.6 | 86.5 |
Table 5 Comparison of detection accuracy with different improvement strategies/%
目标类别 | mAP50:95 | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
scale | 62.9 | 80.7 | 83.0 | 82.4 |
pointer | 24.6 | 91.0 | 93.2 | 91.9 |
R_pointer | 47.3 | 90.3 | 93.7 | 90.6 |
0 | 71.7 | 85.3 | 87.3 | 86.5 |
1 | 71.3 | 81.6 | 83.1 | 82.8 |
2 | 79.6 | 86.6 | 88.4 | 88.6 |
3 | 81.5 | 87.7 | 88.9 | 89.8 |
4 | 85.4 | 88.1 | 89.3 | 88.5 |
5 | 81.4 | 86.9 | 88.3 | 87.7 |
6 | 84.6 | 88.2 | 89.6 | 89.4 |
7 | 84.4 | 89.4 | 89.8 | 94.8 |
8 | 86.2 | 90.5 | 91.3 | 91.2 |
9 | 86.3 | 89.6 | 91.3 | 94.2 |
point | 48.4 | 50.3 | 54.6 | 53.0 |
centre | 82.7 | 85.1 | 86.4 | 86.1 |
all | 71.9 | 84.8 | 86.6 | 86.5 |
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | mAP50:95/ % |
---|---|---|---|---|
R-YOLOv5l | 47.15 | 111.0 | 19.70 | 84.8 |
R-YOLOv5s | 7.54 | 17.4 | 12.25 | 79.2 |
R-YOLOv7-tiny | 6.53 | 14.7 | 11.66 | 76.6 |
Ours | 12.00 | 60.3 | 17.04 | 86.5 |
Table 6 Comparison of the performance of different algorithms
算法 | 参数量/ M | FLOPs/ G | ADT/ ms | mAP50:95/ % |
---|---|---|---|---|
R-YOLOv5l | 47.15 | 111.0 | 19.70 | 84.8 |
R-YOLOv5s | 7.54 | 17.4 | 12.25 | 79.2 |
R-YOLOv7-tiny | 6.53 | 14.7 | 11.66 | 76.6 |
Ours | 12.00 | 60.3 | 17.04 | 86.5 |
干扰类型 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|---|
理想环境 | 1 | 0.38 | 0.384 | 0.16 |
2 | 1.72 | 1.722 | 0.08 | |
光线过亮 | 1 | 0.93 | 0.932 | 0.08 |
2 | 1.38 | 1.375 | -0.20 | |
光线过暗 | 1 | 0.38 | 0.383 | 0.12 |
2 | 1.29 | 1.294 | 0.16 | |
光线不均 | 1 | 1.08 | 1.077 | -0.12 |
2 | 2.27 | 2.272 | 0.08 | |
有光斑 | 1 | 1.42 | 1.417 | -0.12 |
2 | 2.17 | 2.175 | 0.20 | |
椒盐噪声 | 1 | 1.38 | 1.377 | -0.12 |
2 | 1.72 | 1.720 | 0.00 | |
倾斜 | 1 | 0.68 | 0.685 | 0.20 |
2 | 2.30 | 2.295 | -0.20 | |
有划痕 | 1 | 1.23 | 1.232 | 0.08 |
2 | 1.83 | 1.832 | 0.08 | |
反光 | 1 | 0.77 | 0.774 | 0.16 |
2 | 1.78 | 1.778 | -0.08 | |
油污 | 1 | 0.26 | 0.262 | 0.08 |
2 | 2.19 | 2.187 | -0.12 |
Table 7 The automatic reading recognition results of partial pointer instruments in both ideal and interference environments
干扰类型 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|---|
理想环境 | 1 | 0.38 | 0.384 | 0.16 |
2 | 1.72 | 1.722 | 0.08 | |
光线过亮 | 1 | 0.93 | 0.932 | 0.08 |
2 | 1.38 | 1.375 | -0.20 | |
光线过暗 | 1 | 0.38 | 0.383 | 0.12 |
2 | 1.29 | 1.294 | 0.16 | |
光线不均 | 1 | 1.08 | 1.077 | -0.12 |
2 | 2.27 | 2.272 | 0.08 | |
有光斑 | 1 | 1.42 | 1.417 | -0.12 |
2 | 2.17 | 2.175 | 0.20 | |
椒盐噪声 | 1 | 1.38 | 1.377 | -0.12 |
2 | 1.72 | 1.720 | 0.00 | |
倾斜 | 1 | 0.68 | 0.685 | 0.20 |
2 | 2.30 | 2.295 | -0.20 | |
有划痕 | 1 | 1.23 | 1.232 | 0.08 |
2 | 1.83 | 1.832 | 0.08 | |
反光 | 1 | 0.77 | 0.774 | 0.16 |
2 | 1.78 | 1.778 | -0.08 | |
油污 | 1 | 0.26 | 0.262 | 0.08 |
2 | 2.19 | 2.187 | -0.12 |
序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|
1 | 0.28 | 0.265 | -0.25 |
2 | 2.56 | 2.578 | 0.30 |
3 | 5.36 | 5.351 | -0.15 |
Table 8 Automatic reading results for some single-pointer meters
序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|
1 | 0.28 | 0.265 | -0.25 |
2 | 2.56 | 2.578 | 0.30 |
3 | 5.36 | 5.351 | -0.15 |
序号 | 预警值 | 实际值 | ||||
---|---|---|---|---|---|---|
人工 读数/ MPa | 本文 方法 读数/ MPa | 引用 误差/ % | 人工 读数/ MPa | 本文 方法 读数/ MPa | 引用 误差/ % | |
1 | 2.28 | 2.291 | 0.18 | 1.28 | 1.275 | -0.08 |
2 | 5.64 | 5.657 | 0.28 | 3.48 | 3.499 | 0.31 |
3 | 5.84 | 5.819 | -0.35 | 5.36 | 5.355 | -0.08 |
Table 9 Automatic reading results for some dual-pointer meters
序号 | 预警值 | 实际值 | ||||
---|---|---|---|---|---|---|
人工 读数/ MPa | 本文 方法 读数/ MPa | 引用 误差/ % | 人工 读数/ MPa | 本文 方法 读数/ MPa | 引用 误差/ % | |
1 | 2.28 | 2.291 | 0.18 | 1.28 | 1.275 | -0.08 |
2 | 5.64 | 5.657 | 0.28 | 3.48 | 3.499 | 0.31 |
3 | 5.84 | 5.819 | -0.35 | 5.36 | 5.355 | -0.08 |
组号 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|---|
指针表1 | 1 | 35.2 | 35.272 | 0.12 |
2 | 44.8 | 44.642 | -0.26 | |
指针表2 | 1 | 40.2 | 40.069 | -0.22 |
2 | 46.8 | 46.793 | -0.01 |
Table 10 Automatic reading results of some pointer meters in industrial scenarios
组号 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % |
---|---|---|---|---|
指针表1 | 1 | 35.2 | 35.272 | 0.12 |
2 | 44.8 | 44.642 | -0.26 | |
指针表2 | 1 | 40.2 | 40.069 | -0.22 |
2 | 46.8 | 46.793 | -0.01 |
运动模糊类型 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % | |
---|---|---|---|---|---|
L/像素 | a/° | ||||
20 | 0 | 1 | 0.16 | 0.156 | -0.16 |
2 | 0.75 | 0.752 | 0.08 | ||
20 | 30 | 1 | 0.75 | 0.752 | 0.08 |
2 | 1.38 | 1.375 | -0.20 | ||
20 | 45 | 1 | 1.07 | 1.078 | 0.32 |
2 | 1.38 | 1.375 | -0.20 | ||
20 | 60 | 1 | 1.72 | 1.722 | 0.08 |
2 | 1.90 | 1.904 | 0.16 | ||
30 | 45 | 1 | 0.38 | 0.385 | 0.20 |
2 | 2.25 | 2.245 | -0.20 | ||
40 | 45 | 1 | 1.38 | 1.372 | -0.32 |
2 | 2.38 | 2.372 | -0.32 |
Table 11 Automatic reading recognition results for motion blurred pointer gauges
运动模糊类型 | 序号 | 人工读数/ MPa | 本文方法 读数/MPa | 引用误差/ % | |
---|---|---|---|---|---|
L/像素 | a/° | ||||
20 | 0 | 1 | 0.16 | 0.156 | -0.16 |
2 | 0.75 | 0.752 | 0.08 | ||
20 | 30 | 1 | 0.75 | 0.752 | 0.08 |
2 | 1.38 | 1.375 | -0.20 | ||
20 | 45 | 1 | 1.07 | 1.078 | 0.32 |
2 | 1.38 | 1.375 | -0.20 | ||
20 | 60 | 1 | 1.72 | 1.722 | 0.08 |
2 | 1.90 | 1.904 | 0.16 | ||
30 | 45 | 1 | 0.38 | 0.385 | 0.20 |
2 | 2.25 | 2.245 | -0.20 | ||
40 | 45 | 1 | 1.38 | 1.372 | -0.32 |
2 | 2.38 | 2.372 | -0.32 |
测试 编号 | 图片的读数时间 | |||
---|---|---|---|---|
需运动模糊处理 | 无需运动模糊处理 | |||
30张 | 每张 | 30张 | 每张 | |
1 | 16.776 | 0.559 | 3.839 | 0.128 |
2 | 16.812 | 0.560 | 3.879 | 0.129 |
3 | 16.793 | 0.560 | 3.523 | 0.117 |
4 | 16.912 | 0.564 | 3.835 | 0.127 |
5 | 16.853 | 0.562 | 4.124 | 0.137 |
平均读 数时间/s | 16.829 | 0.561 | 3.840 | 0.128 |
Table 12 Pointer meter automatic reading recognition time test/s
测试 编号 | 图片的读数时间 | |||
---|---|---|---|---|
需运动模糊处理 | 无需运动模糊处理 | |||
30张 | 每张 | 30张 | 每张 | |
1 | 16.776 | 0.559 | 3.839 | 0.128 |
2 | 16.812 | 0.560 | 3.879 | 0.129 |
3 | 16.793 | 0.560 | 3.523 | 0.117 |
4 | 16.912 | 0.564 | 3.835 | 0.127 |
5 | 16.853 | 0.562 | 4.124 | 0.137 |
平均读 数时间/s | 16.829 | 0.561 | 3.840 | 0.128 |
[1] | 熊国良, 肖文明, 王小明. 基于视觉的指针式仪表检测与识别方法综述[J]. 传感器与微系统, 2020, 39(12): 1-3, 9. |
XIONG G L, XIAO W M, WANG X M. Review of pointer meter detection and recognition method based on vision[J]. Transducer and Microsystem Technologies, 2020, 39(12): 1-3, 9. (in Chinese) | |
[2] | 周泓, 徐海儿, 耿晨歌. 基于HSI模型和Hough变换的指针式汽车仪表自动校验[J]. 浙江大学学报(工学版), 2010, 44(6): 1108-1112. |
ZHOU H, XU H E, GENG C G. Automatic checking of pointer automotive dashboard based on HIS model and Hough transformation[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(6): 1108-1112. (in Chinese) | |
[3] | 黄炎, 李文胜, 麦晓明, 等. 基于一维测量线映射的变电站指针仪表智能识读方法[J]. 广东电力, 2018, 31(12): 80-85. |
HUANG Y, LI W S, MAI X M, et al. Intelligent recognition method for substation pointer meter images based on one-dimensional measuring line mapping[J]. Guangdong Electric Power, 2018, 31(12): 80-85. (in Chinese) | |
[4] |
阎光伟, 刘润泽, 焦润海, 等. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860.
DOI |
YAN G W, LIU R Z, JIAO R H, et al. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN[J]. Journal of Graphics, 2023, 44(5): 849-860. (in Chinese) | |
[5] | 万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097-3105. |
WAN J L, WANG H F, GUAN M Y, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-Net[J]. Power System Technology, 2020, 44(8): 3097-3105. (in Chinese) | |
[6] | 陶金, 林文伟, 曾亮, 等. 基于YOLOv4-tiny和Hourglass的指针式仪表读数识别[J]. 电子测量与仪器学报, 2023, 37(5): 1-10. |
TAO J, LIN W W, ZENG L, et al. Pointer meter reading recognition based on YOLOv4-tiny and Hourglass[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5): 1-10. (in Chinese) | |
[7] | HOU L Q, WANG S, SUN X P, et al. A pointer meter reading recognition method based on YOLOX and semantic segmentation technology[J]. Measurement, 2023, 218: 113241. |
[8] |
赵振兵, 马迪雅, 石颖, 等. 基于改进YOLOX的变电站仪表外观缺陷检测算法[J]. 图学学报, 2023, 44(5): 937-946.
DOI |
ZHAO Z B, MA D Y, SHI Y, et al. Appearance defect detection algorithm of substation instrument based on improved YOLOX[J]. Journal of Graphics, 2023, 44(5): 937-946. (in Chinese) | |
[9] | UEDA S, SUZUKI K, KANNO J, et al. A two-stage deep learning-based approach for automatic reading of analog meters[C]// The 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems. New York: IEEE Press, 2020: 1-6. |
[10] | 孙晓朋, 侯立群, 渠怀胜. 基于卷积神经网络的渐进式指针表自动读数方法[J]. 传感技术学报, 2021, 34(10): 1326-1333. |
SUN X P, HOU L Q, QU H S. Gradually Automatic reading method for pointer meters using convolutional neural network[J]. Chinese Journal of Sensors and Actuators, 2021, 34(10): 1326-1333. (in Chinese) | |
[11] | ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239. |
[12] | 杨武, 胡敏, 常鑫, 等. 改进的DeepLabV3+指针式仪表图像分割算法[J]. 国外电子测量技术, 2024, 43(1): 10-19. |
YANG W, HU M, CHANG X, et al. Improved image segmentation algorithm of DeepLabV3+ pointer meter[J]. Foreign Electronic Measurement Technology, 2024, 43(1): 10-19. (in Chinese) | |
[13] | 朱斌滨, 樊绍胜. 雨雾环境下的变电站指针式仪表识别方法[J]. 激光与光电子学进展, 2021, 58(24): 2410008. |
ZHU B B, FAN S S. Reading method of substation pointer meter in rain-fog environment[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2410008. (in Chinese) | |
[14] | ZHAI X M, PEI D. Research on intelligent reading algorithm of pointer meter based on deep learning[J]. International Core Journal of Engineering, 2022, 8(4): 554-565. |
[15] | 侯卓成, 欧阳华, 胡鑫, 等. 基于深度学习的模糊指针式仪表矫正读数方法[J]. 电子测量技术, 2023, 46(9): 158-165. |
HOU Z C, OUYANG H, HU X, et al. Correction reading method of fuzzy pointer instrument based on deep learning[J]. Electronic Measurement Technology, 2023, 46(9): 158-165. (in Chinese) | |
[16] | MA Y F, JIANG Q, WANG J J, et al. An automatic reading method of pointer instruments[C]// 2017 Chinese Automation Congress. New York: IEEE Press, 2017: 1448-1453. |
[17] | HOU L Q, QU H S. Automatic recognition system of pointer meters based on lightweight CNN and WSNs with on-sensor image processing[J]. Measurement, 2021, 183: 109819. |
[18] | HOU L Q, SUN X P, WANG S. A coarse-fine reading recognition method for pointer meters based on CNN and computer vision[J]. Engineering Research Express, 2022, 4(3): 035046. |
[19] | GAO H J, YI M, YU J Y, et al. Character segmentation-based coarse-fine approach for automobile dashboard detection[J]. IEEE Transactions on Industrial Informatics. 2019, 15(10): 5413-5424. |
[20] | LI Z, ZHOU Y S, SHENG Q H, et al. A high-robust automatic reading algorithm of pointer meters based on text detection[J]. Sensors, 2020, 20(20): 5946. |
[21] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[22] | YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 677-694. |
[23] | OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[24] | LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL]. (2021-05-09) [2024-05-23]. https://arxiv.org/abs/2010.07611. |
[25] | YANG X, YANG J R, YAN J C, et al. SCRDeT: towards more robust detection for small, cluttered and rotated objects[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 8231-8240. |
[26] | CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 4621-4630. |
[27] | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5718-5729. |
[28] | NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 483-499. |
[29] | LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization-based attention module[EB/OL]. (2021-11-24) [2024-05-23]. https://arxiv.org/abs/2111.12419. |
[30] | CUI Y N, TAO Y, BING Z S, et al. Selective frequency network for image restoration[EB/OL]. [2024-05-23]. https://openreview.net/forum?id=tyZ1ChGZIKO. |
[31] | 半片青柠. 工业场景下指针表数据集_语义分割做指针识别资源-CSDN文库[EB/OL]. (2024-05-11) [2024-05-23]. https://download.csdn.net/download/sinat_40587853/87453496? |
Half a Slice of Lime. Pointer table dataset for industrial scenarios_semantic segmentation for pointer recognition resources - CSDN library[EB/OL]. (2024-05-11) [2024-05-23]. https://download.csdn.net/download/sinat_40587853/87453496?. (in Chinese) |
[1] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[2] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[3] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[4] | WU Jingyi, JING Jun, HE Yifan, ZHANG Shiyu, KANG Yunfeng, TANG Wei, KONG Delan, LIU Xiangdong. Traffic anomaly event analysis method for highway scenes based on multimodal large language models [J]. Journal of Graphics, 2024, 45(6): 1266-1276. |
[5] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[6] | LUAN Shuai, WU Jian, FAN Runze, WANG Lili. Observation quality field based collaborative object manipulation in VR [J]. Journal of Graphics, 2024, 45(6): 1338-1348. |
[7] | REN Yangfu, YU Ge, FU Yueyao, XU Senzhe, HE Yu, WANG Juhong, ZHANG Songhai. The impact of scenery and time on spatial orientation cognition in virtual reality [J]. Journal of Graphics, 2024, 45(6): 1349-1363. |
[8] | LIU Chang, ZHANG Yuming, ZHANG Qian, OU Qiaofeng, ZHAO Tongshuo, CHEN Hao, SHI Lei. Web3D global illumination cloud rendering based on advanced DDGI [J]. Journal of Graphics, 2024, 45(6): 1364-1374. |
[9] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[10] | YANG Haozhong, KONG Xiaoyu, GU Ruikun, WANG Miao. Research progress and trends in large model technologies for virtual reality [J]. Journal of Graphics, 2024, 45(6): 1117-1131. |
[11] | LIU Jichen, LI Jinxing, WU Jia, ZHANG Wei, QI Yunuo, ZHOU Guoliang. Prospects for the application of large models technology in the power industry [J]. Journal of Graphics, 2024, 45(6): 1132-1144. |
[12] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[13] | XU Pei, HUANG Kaiqi. An efficient reinforcement learning method based on large language model [J]. Journal of Graphics, 2024, 45(6): 1165-1177. |
[14] | CHEN Xiaojiao, SHU Yunfeng, WANG Ruihan, ZHOU Jiahuan, CHEN Wei. Large language model powered UI evaluation system [J]. Journal of Graphics, 2024, 45(6): 1178-1187. |
[15] | YU Han, CHEN Zhiyuan, XIONG Xirui, DAI Yuanxing, CAI Hongming. Intelligent MBSE design approach based on retrieval augmented large language model [J]. Journal of Graphics, 2024, 45(6): 1188-1199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||