Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 249-258.DOI: 10.11996/JG.j.2095-302X.2025020249
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Lili1,3(), YANG Kang1, ZHANG Ke1, WEI Wei1, LI Jing1, TAN Hongxin2(
), ZHANG Xiangyu3
Received:
2024-07-22
Accepted:
2024-11-25
Online:
2025-04-30
Published:
2025-04-24
Contact:
TAN Hongxin
About author:
First author contact:ZHANG Lili (1988-), associate professor, Ph.D. His main research interest covers intelligent transportation. E-mail:zhanglili@bipt.edu.cn
Supported by:
CLC Number:
ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke[J]. Journal of Graphics, 2025, 46(2): 249-258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020249
配置 | 参数 |
---|---|
CPU | Intel Core i7-7700K @4.20 GHz |
GPU | NVIDIA GeForce RTX 4090 |
内存 | 24 GB |
操作系统 | Ubuntu 18.04 |
深度学习框架 | PyTorch 2.0 |
编程语言 | Python3.9 |
Table 1 Experimental environment configuration
配置 | 参数 |
---|---|
CPU | Intel Core i7-7700K @4.20 GHz |
GPU | NVIDIA GeForce RTX 4090 |
内存 | 24 GB |
操作系统 | Ubuntu 18.04 |
深度学习框架 | PyTorch 2.0 |
编程语言 | Python3.9 |
Model | Param/M | FLOPs/G | Precision/% | Recall/% | mAp(0.50)/% | mAp(0.50∶0.95)/% | FPS |
---|---|---|---|---|---|---|---|
Faster-RCNN | 165.00 | 199.0 | 82.0 | 87.0 | 85.3 | 41.3 | 24 |
SSD | 24.50 | 87.9 | 79.0 | 82.0 | 81.5 | 46.8 | 32 |
YOLOv5s | 7.10 | 16.5 | 75.9 | 82.0 | 83.7 | 50.1 | 40 |
YOLOv6s | 18.50 | 45.3 | 83.7 | 84.1 | 89.1 | 52.5 | 42 |
YOLOv8s | 11.10 | 28.8 | 85.5 | 87.3 | 88.1 | 57.9 | 45 |
YOLO-BSD | 9.27 | 22.2 | 94.5 | 97.5 | 95.4 | 69.7 | 57 |
Table 2 Comparison experiment of different detection networks
Model | Param/M | FLOPs/G | Precision/% | Recall/% | mAp(0.50)/% | mAp(0.50∶0.95)/% | FPS |
---|---|---|---|---|---|---|---|
Faster-RCNN | 165.00 | 199.0 | 82.0 | 87.0 | 85.3 | 41.3 | 24 |
SSD | 24.50 | 87.9 | 79.0 | 82.0 | 81.5 | 46.8 | 32 |
YOLOv5s | 7.10 | 16.5 | 75.9 | 82.0 | 83.7 | 50.1 | 40 |
YOLOv6s | 18.50 | 45.3 | 83.7 | 84.1 | 89.1 | 52.5 | 42 |
YOLOv8s | 11.10 | 28.8 | 85.5 | 87.3 | 88.1 | 57.9 | 45 |
YOLO-BSD | 9.27 | 22.2 | 94.5 | 97.5 | 95.4 | 69.7 | 57 |
Model | Param/ M | Precision/ % | Recall/ % | mAp(0.50)/ % |
---|---|---|---|---|
YOLOv8s | 11.10 | 82.4 | 78.6 | 81.4 |
YOLO-BSD | 9.27 | 85.8 | 82.9 | 83.5 |
Table 3 Comparison experiments on the TT100K dataset
Model | Param/ M | Precision/ % | Recall/ % | mAp(0.50)/ % |
---|---|---|---|---|
YOLOv8s | 11.10 | 82.4 | 78.6 | 81.4 |
YOLO-BSD | 9.27 | 85.8 | 82.9 | 83.5 |
Model | C2f-FasterRep | HLS-PAN | New Head | Param/M | mAp(0.50)/% |
---|---|---|---|---|---|
11.10 | 88.10 | ||||
YOLOv8s | √ | 10.20 | 93.44 | ||
√ | 9.79 | 92.97 | |||
√ | 13.10 | 91.33 | |||
YOLO-BSD | √ | √ | 7.81 | 94.18 | |
√ | √ | √ | 9.27 | 95.40 |
Table 4 Ablation experiment on self-collection dataset
Model | C2f-FasterRep | HLS-PAN | New Head | Param/M | mAp(0.50)/% |
---|---|---|---|---|---|
11.10 | 88.10 | ||||
YOLOv8s | √ | 10.20 | 93.44 | ||
√ | 9.79 | 92.97 | |||
√ | 13.10 | 91.33 | |||
YOLO-BSD | √ | √ | 7.81 | 94.18 | |
√ | √ | √ | 9.27 | 95.40 |
Model | Class | Location | Both | Duplicate | Bkgd | Missed |
---|---|---|---|---|---|---|
YOLOv8s | 2.34 | 1.17 | 0.21 | 0.05 | 1.35 | 0.18 |
YOLO-BSD | 1.10 | 0.32 | 0.07 | 0.01 | 0.87 | 0.02 |
Table 5 Comparison of different error types/%
Model | Class | Location | Both | Duplicate | Bkgd | Missed |
---|---|---|---|---|---|---|
YOLOv8s | 2.34 | 1.17 | 0.21 | 0.05 | 1.35 | 0.18 |
YOLO-BSD | 1.10 | 0.32 | 0.07 | 0.01 | 0.87 | 0.02 |
[1] | 丁怡婷. 力争2030年前实现碳达峰, 2060年前实现碳中和——打赢低碳转型硬仗[R/OL]. (2021-04-02) [2024-04-21]. https://www.gov.cn/xinwen/2021-04/02/content_5597403.htm. |
DING Y T. Strive to achieve carbon peak before 2030 and carbon neutrality before 2060-win the tough battle of low-carbon transformation[R/OL]. (2021-04-02) [2024-04-21]. https://www.gov.cn/xinwen/2021-04/02/content_5597403.htm. (in Chinese). | |
[2] | 中华人民共和国生态环境部, 中华人民共和国国家发展和改革委员会, 中华人民共和国科学技术部, 等. 关于印发《深入打好重污染天气消除、臭氧污染防治和柴油货车污染治理攻坚战行动方案》的通知[R/OL]. (2022-11-10) [2024-04-21]. https://www.gov.cn/zhengce/zhengceku/2022-11/17/content_5727605.htm. |
Ministry of Ecology and Environment of the People’s Republic of China, National Development and Reform Commission, Ministry of Science and Technology of the People’s Republic of China, et al. Notice on the issuance of the in-depth fight to eliminate heavy pollution weather, ozone pollution prevention and control and diesel truck pollution control action plan[R/OL]. (2022-11-10) [2024-04-21]. https://www.gov.cn/zhengce/zhengceku/2022-11/17/content_5727605.htm (in Chinese). | |
[3] | 郭韬远, 任明武. 基于注意机制的双分支黑烟车辆检测网络[J]. 计算机与数字工程, 2022, 50(1): 147-151. |
GUO T Y, REN M W. Dual branch network for black smoke and vehicle detection based on attention mechanism[J]. Computer and Digital Engineering, 2022, 50(1): 147-151 (in Chinese). | |
[4] | TAO H J, LU X B. Contour-based smoky vehicle detection from surveillance video for alarm systems[J]. Signal, Image and Video Processing, 2019, 13(2): 217-225. |
[5] | 江东, 王晓龙, 陈政, 等. 基于深度学习算法的机动车尾气排放黑烟监测[J]. 现代电子技术, 2023, 46(17): 66-69. |
JIANG D, WANG X L, CHEN Z, et al. Monitoring of black smoke from motor vehicle exhaust based on deep learning algorithm[J]. Modern Electronics Technique, 2023, 46(17): 66-69 (in Chinese). | |
[6] | 吴丙芳, 叶兵, 汪仕铭. 一种双流卷积神经网络的黑烟车检测算法[J]. 合肥工业大学学报(自然科学版), 2022, 45(2): 198-202. |
WU B F, YE B, WANG S M. Smoky vehicle detection based on two-stream convolutional neural networks[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45(2): 198-202 (in Chinese). | |
[7] | 杨哲, 李威. 基于ResNet34改进的黑烟检测算法[J]. 长江信息通信, 2023, 36(4): 88-90. |
YANG Z, LI W. Improved black smoke detection algorithm based on ResNet34[J]. Changjiang Information Communication, 2023, 36(4): 88-90 (in Chinese). | |
[8] |
CAO Y C, LU X B. Learning spatial-temporal representation for smoke vehicle detection[J]. Multimedia Tools and Applications, 2019, 78(19): 27871-27889.
DOI |
[9] | TAO H J, LU X B. Automatic smoky vehicle detection from traffic surveillance video based on vehicle rear detection and multi‐feature fusion[J]. IET Intelligent Transport Systems, 2019, 13(2): 252-259. |
[10] | TAO H J, LU X B. Smoke vehicle detection based on spatiotemporal bag-of-features and professional convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3301-3316. |
[11] | 井振威, 张团善. 基于GSS-YOLOv8n的轻量化织物疵点检测算法[J/OL]. (2024-07-18) [2024-05-22]. http://kns.cnki.net/kcms/detail/61.1132.ts.20240716.1140.002.html. |
JING Z W, ZHANG S T. Lightweight fabric defect detection algorithm based on GSS-YOLOv8n[J/OL]. (2024-07-18) [2024-05-22]. http://kns.cnki.net/kcms/detail/61.1132.ts.20240716.1140.002.html. (in Chinese). | |
[12] | 叶大鹏, 景均, 张之得, 等. MSH-YOLOv8: 融合尺度重建的蘑菇小目标检测方法[J]. 智慧农业, 2024, 6(5): 139-152. |
YE D P, JING J, ZHANG Z D, et al. MSH-YOLOv8: mushroom small object detection method with scale reconstruction and fusion[J]. Smart Agriculture, 2024, 6(5): 139-152 (in Chinese).
DOI |
|
[13] |
肖振久, 严肃, 曲海成. 基于多重机制优化YOLOv8的复杂环境下安全帽检测方法[J]. 计算机工程与应用, 2024, 60(21): 172-182.
DOI |
XIAO Z J, YAN S, QU H C. Safety helmet detection method in complex environment based on multi-mechanism optimization of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(21): 172-182 (in Chinese).
DOI |
|
[14] | LIU J F, YANG L J, CHENG H X, et al. Three-dimensional convolutional vehicle black smoke detection model with fused temporal features[J]. Applied Sciences, 2024, 14(18): 8173. |
[15] | CHEN K, WANG H, ZHAI Y C. A lightweight model for real-time detection of vehicle black smoke[J]. Sensors, 2023, 23(23): 9492. |
[16] | WANG H, CHEN K, LI Y F. Automatic detection method for black smoke vehicles considering motion shadows[J]. Sensors, 2023, 23(19): 8281. |
[17] | WANG S P, HAN Y, YU M M, et al. Research on black smoke detection and class evaluation method for ships based on YOLOv5s-cmbi multi-feature fusion[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1945. |
[18] |
李珍峰, 符世琛, 徐乐, 等. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312.
DOI |
LI Z F, FU S C, XU L, et al. Research on gangue target detection algorithm based on MBI-YOLOv8[J]. Journal of Graphics, 2024, 45(6): 1301-1312 (in Chinese).
DOI |
|
[19] |
胡凤阔, 叶兰, 谭显峰, 等. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900.
DOI |
HU F K, YE L, TAN X F, et al. A refined YOLOv8-based algorithm for lightweight pavement disease detection[J]. Journal of Graphics, 2024, 45(5): 892-900 (in Chinese).
DOI |
|
[20] |
苑朝, 赵亚冬, 张耀, 等. 基于YOLO轻量化的多模态行人检测算法[J]. 图学学报, 2024, 45(1): 35-46.
DOI |
YUAN C, ZHAO Y D, ZHANG Y, et al. Lightweight multi-modal pedestrian detection algorithm based on YOLO[J]. Journal of Graphics, 2024, 45(1): 35-46 (in Chinese).
DOI |
|
[21] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2024-05-22]. https://dl.acm.org/doi/10.5555/3045118.3045167. |
[22] | ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]// The 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000. |
[23] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[24] | HO Y, WOOKEY S. The real-world-weight cross-entropy loss function: modeling the costs of mislabeling[J]. IEEE Access, 2020, 8: 4806-4813. |
[25] | BERGER M A. Random affine iterated function systems: mixing and encoding[M]// PINSKYM A, WIHSTUTZV. Diffusion Processes and Related Problems in Analysis, Volume II:Stochastic Flows. Boston: Birkhäuser, 1992: 315-346. |
[26] | BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: fast and flexible image augmentations[J]. Information, 2020, 11(2): 125. |
[1] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
[2] | ZHAO Zhenbing, HAN Yu, TANG Chenkang. Cascade detection method for insulator defects in distribution lines based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 1-12. |
[3] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
[4] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
[5] | WANG Zhidong, CHEN Chenyang, LIU Xiaoming. The defect detection method for communication optical cables based on lightweight improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 28-34. |
[6] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[7] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
[8] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[9] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[10] | SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning [J]. Journal of Graphics, 2025, 46(1): 81-93. |
[11] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
[12] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[13] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[14] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[15] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||