Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1161-1171.DOI: 10.11996/JG.j.2095-302X.2025061161
• Core Industrial Software for Manufacturing Products • Previous Articles Next Articles
JU Chen1,2(
), DING Jiaxin1,2, WANG Zexing3, LI Guangzhao1,2, GUAN Zhenxiang4, ZHANG Changyou1(
)
Received:2025-09-18
Accepted:2025-10-29
Online:2025-12-30
Published:2025-12-27
Contact:
ZHANG Changyou
About author:First author contact:JU Chen (2001-),PhD candidate. His main research interests cover system simulation and deep learning. E-mail:juchen23@mails.ucas.ac.cn
Supported by:CLC Number:
JU Chen, DING Jiaxin, WANG Zexing, LI Guangzhao, GUAN Zhenxiang, ZHANG Changyou. Graph neural network-based method for approximating finite element shape functions[J]. Journal of Graphics, 2025, 46(6): 1161-1171.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061161
| 训练参数 | 具体设置 |
|---|---|
| train_ratio | 0.8 |
| batch_size | 32 |
| gnn_hidden | 64 |
| embed_dim | 8 |
| epochs | 100 |
| lr | 0.001 |
| lamda | 0.1 |
Table 1 Training parameter table
| 训练参数 | 具体设置 |
|---|---|
| train_ratio | 0.8 |
| batch_size | 32 |
| gnn_hidden | 64 |
| embed_dim | 8 |
| epochs | 100 |
| lr | 0.001 |
| lamda | 0.1 |
| 模型 | MSE | MSE_STD | MAE | MAE_STD | 约束MSE | 约束MSE_STD |
|---|---|---|---|---|---|---|
| full | 0.174 4 | 0.094 6 | 2.425 4 | 0.388 3 | 0.064 8 | 0.025 0 |
| no_cell_embed | 0.182 9 | 0.092 1 | 2.472 7 | 0.380 2 | 0.085 6 | 0.037 4 |
| no_norm | 0.188 3 | 0.097 5 | 2.493 7 | 0.396 1 | 0.087 3 | 0.031 3 |
| no_global_feat | 0.255 4 | 0.011 8 | 3.025 3 | 0.450 8 | 0.145 8 | 0.059 5 |
| mlp_only | 0.369 0 | 0.012 6 | 3.724 0 | 0.519 9 | 0.247 4 | 0.111 5 |
Table 2 Ablation experiment data
| 模型 | MSE | MSE_STD | MAE | MAE_STD | 约束MSE | 约束MSE_STD |
|---|---|---|---|---|---|---|
| full | 0.174 4 | 0.094 6 | 2.425 4 | 0.388 3 | 0.064 8 | 0.025 0 |
| no_cell_embed | 0.182 9 | 0.092 1 | 2.472 7 | 0.380 2 | 0.085 6 | 0.037 4 |
| no_norm | 0.188 3 | 0.097 5 | 2.493 7 | 0.396 1 | 0.087 3 | 0.031 3 |
| no_global_feat | 0.255 4 | 0.011 8 | 3.025 3 | 0.450 8 | 0.145 8 | 0.059 5 |
| mlp_only | 0.369 0 | 0.012 6 | 3.724 0 | 0.519 9 | 0.247 4 | 0.111 5 |
| 随机种子不同λ | 42 | 101 | 202 | |||
|---|---|---|---|---|---|---|
| MSE | 约束MSE | MSE | 约束MSE | MSE | 约束MSE | |
| 0 | 0.153 9 | 0.404 1 | 0.162 8 | 0.470 6 | 0.153 0 | 0.391 8 |
| 0.01 | 0.149 4 | 0.320 1 | 0.162 6 | 0.389 8 | 0.151 4 | 0.374 7 |
| 0.10 | 0.150 4 | 0.252 5 | 0.150 3 | 0.207 8 | 0.147 8 | 0.206 1 |
| 0.50 | 0.184 6 | 0.067 3 | 0.182 4 | 0.082 0 | 0.183 0 | 0.084 3 |
| 1.00 | 0.225 6 | 0.028 3 | 0.222 0 | 0.038 8 | 0.210 9 | 0.030 2 |
| 5.00 | 0.283 6 | 0.005 4 | 0.300 6 | 0.005 2 | 0.286 9 | 0.006 5 |
Table 3 Experiment data of constrained weight λ
| 随机种子不同λ | 42 | 101 | 202 | |||
|---|---|---|---|---|---|---|
| MSE | 约束MSE | MSE | 约束MSE | MSE | 约束MSE | |
| 0 | 0.153 9 | 0.404 1 | 0.162 8 | 0.470 6 | 0.153 0 | 0.391 8 |
| 0.01 | 0.149 4 | 0.320 1 | 0.162 6 | 0.389 8 | 0.151 4 | 0.374 7 |
| 0.10 | 0.150 4 | 0.252 5 | 0.150 3 | 0.207 8 | 0.147 8 | 0.206 1 |
| 0.50 | 0.184 6 | 0.067 3 | 0.182 4 | 0.082 0 | 0.183 0 | 0.084 3 |
| 1.00 | 0.225 6 | 0.028 3 | 0.222 0 | 0.038 8 | 0.210 9 | 0.030 2 |
| 5.00 | 0.283 6 | 0.005 4 | 0.300 6 | 0.005 2 | 0.286 9 | 0.006 5 |
| 测试类型 | MSE | MSE_STD | MAE | MAE_STD | 约束MSE |
|---|---|---|---|---|---|
| full | 0.175 2 | 0.064 1 | 2.432 4 | 0.251 7 | 0.064 7 |
| scale_0.5 | 4.785 8 | 0.403 7 | 15.588 2 | 0.649 9 | 2.410 7 |
| scale_2.0 | 3.418 0 | 0.338 1 | 12.587 7 | 0.632 6 | 0.605 4 |
| only_4node | 0.151 2 | 0.078 8 | 2.332 8 | 0.361 5 | 0.032 0 |
| only_10node | 0.186 5 | 0.064 3 | 2.477 3 | 0.255 7 | 0.097 2 |
| bad_elements | 0.252 1 | 0.173 0 | 3.473 7 | 0.374 1 | 1.131 3 |
Table 4 Experimental data for model generalization ability testing
| 测试类型 | MSE | MSE_STD | MAE | MAE_STD | 约束MSE |
|---|---|---|---|---|---|
| full | 0.175 2 | 0.064 1 | 2.432 4 | 0.251 7 | 0.064 7 |
| scale_0.5 | 4.785 8 | 0.403 7 | 15.588 2 | 0.649 9 | 2.410 7 |
| scale_2.0 | 3.418 0 | 0.338 1 | 12.587 7 | 0.632 6 | 0.605 4 |
| only_4node | 0.151 2 | 0.078 8 | 2.332 8 | 0.361 5 | 0.032 0 |
| only_10node | 0.186 5 | 0.064 3 | 2.477 3 | 0.255 7 | 0.097 2 |
| bad_elements | 0.252 1 | 0.173 0 | 3.473 7 | 0.374 1 | 1.131 3 |
| [1] | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 1-9. |
| WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 1-9 (in Chinese). | |
| [2] |
PHANDEN R K, SHARMA P, DUBEY A. A review on simulation in digital twin for aerospace, manufacturing and robotics[J]. Materials Today: Proceedings, 2021, 38: 174-178.
DOI URL |
| [3] |
RAJ E F I, APPADURAI M, RANI E F I, et al. Finite-element design and analysis of switched reluctance motor for automobileapplications[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2022, 5(3): 269-277.
DOI |
| [4] |
TRAN-NGOC H, KHATIR S, LE-XUAN T, et al. Finite element model updating of a multispan bridge with a hybrid metaheuristic search algorithm using experimental data from wireless triaxial sensors[J]. Engineering with Computers, 2022, 38(3): 1865-1883.
DOI |
| [5] | 刘习洲, 王城璟, 王琥. 基于h型自适应有限元法在薄板冲压成型中的应用[J]. 图学学报, 2021, 42(6): 970-978. |
| LIU X Z, WANG C J, WANG H. Application in sheet metal forming based on h-adaptive finite element method[J]. Journal of Graphics, 2021, 42(6): 970-978 (in Chinese). | |
| [6] |
PHELLAN R, HACHEM B, CLIN J, et al. Real-time biomechanics using the finite element method and machine learning: review and perspective[J]. Medical Physics, 2021, 48(1): 7-18.
DOI PMID |
| [7] | BOITO F, GOMES A T A, PEYRONDET L, et al. I/O performance of multiscale finite element simulations on HPC environments[C]// 2022 International Symposium on Computer Architecture and High Performance Computing Workshops. New York: IEEE Press, 2022: 9-16. |
| [8] |
EL KADMIRI R, BELAASILIA Y, TIMESLI A. Analysis of inhomogeneous structures in small and large deformations using the finite element-meshless coupling method[J]. Computers & Mathematics with Applications, 2024, 169: 273-297.
DOI URL |
| [9] |
ZHAO J G, LIU G R, HUO S H, et al. N-sided polygonal cell-based smoothed finite element method (nCS-FEM) based on Wachspress shape function for modal analysis[J]. Engineering Analysis with Boundary Elements, 2024, 159: 434-451.
DOI URL |
| [10] |
ZHANG L, CHENG L, LI H Y, et al. Hierarchical deep-learning neural networks: finite elements and beyond[J]. Computational Mechanics, 2021, 67(1): 207-230.
DOI |
| [11] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
DOI URL |
| [12] |
LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229.
DOI |
| [13] |
NOVO J, TERRÉS E. Can neural networks learn finite elements?[J]. Journal of Computational and Applied Mathematics, 2025, 453: 116168.
DOI URL |
| [14] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI PMID |
| [15] |
HE J C, LI L, XU J C, et al. ReLUdeep neural networks and linear finite elements[J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
DOI URL |
| [16] |
LONGO M, OPSCHOOR J A A, DISCH N, et al. de Rham compatible deep neural network FEM[J]. Neural Networks, 2023, 165: 721-739.
DOI PMID |
| [17] | ROWBOTTOM J, MAIERHOFER G, DEVENEY T, et al. G-Adaptivity: optimised graph-based mesh relocation for finite element methods[EB/OL]. [2025-07-17]. https://arxiv.org/abs/2407.04516. |
| [18] | ŠKARDOVÁ K, DABY-SEESARAM A, GENET M. Finite element neural network interpolation: Part I—interpretable and adaptive discretization for solving PDEs[EB/OL].(2025-08-28) [2025-09-05]. https://doi.org/10.1007/s00466-025-02677-3. |
| [19] | WANG Y F, LIN Z S, XIE H H. Neural network element method for partial differential equations[EB/OL]. [2025-07-17]. https://arxiv.org/abs/2504.16862. |
| [20] |
XIONG W, LONG X Y, BORDAS S P A, et al. The deep finite element method: a deep learning framework integrating the physics-informed neural networks with the finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 436: 117681.
DOI URL |
| [21] |
MOSELEY B, MARKHAM A, NISSEN-MEYER T. Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations[J]. Advances in Computational Mathematics, 2023, 49(4): 62.
DOI |
| [22] |
NI N, XU Q Y, LI Z H, et al. Numerical coarsening with neural shape functions[J]. Computer Graphics Forum, 2023, 42(6): e14736.
DOI URL |
| [23] |
VU T H, DEEKS A J. Use of higher‐order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2006, 65(10): 1714-1733.
DOI URL |
| [24] | JAGOTA V, SETHI A P S, KUMAR K. Finite element method: an overview[J]. Walailak Journal of Science and Technology (WJST), 2013, 10(1): 1-8. |
| [25] |
ONISHI Y. Selective cell-based smoothed finite element method using 10-node tetrahedral element with radial element subdivision[J]. International Journal of Computational Methods, 2022, 19(7): 2141015.
DOI URL |
| [1] | ZHOU Tianqi, DING Jun, YAO Yu. Development of reduced integration micropolar hexahedron finite element and application verification [J]. Journal of Graphics, 2025, 46(6): 1153-1160. |
| [2] | YI Bin, ZHANG Libin, LIU Danying, TANG Jun, FANG Junjun, LI Wenqi. Prediction model of laser drilling ventilation rate in cigarette manufacturing process based on AMTA-Net [J]. Journal of Graphics, 2025, 46(6): 1224-1232. |
| [3] | BO Wen, JU Chen, LIU Weiqing, ZHANG Yan, HU Jingjing, CHENG Jinghan, ZHANG Changyou. Degradation-driven temporal modeling method for equipment maintenance interval prediction [J]. Journal of Graphics, 2025, 46(6): 1233-1246. |
| [4] | ZHAO Zhenbing, Ouyang Wenbin, FENG Shuo, LI Haopeng, MA Jun. A thermal image detection method for insulators incorporating within-class sparse prior knowledge and improved YOLOv8 [J]. Journal of Graphics, 2025, 46(6): 1247-1256. |
| [5] | HE Mengmeng, ZHANG Xiaoyan, LI Hongan. Lightweight skin lesion image segmentation network based on Mamba structure [J]. Journal of Graphics, 2025, 46(6): 1257-1266. |
| [6] | LI Xingchen, LI Zongmin, YANG Chaozhi. Test-time adaptation algorithm based on trusted pseudo-label fine-tuning [J]. Journal of Graphics, 2025, 46(6): 1292-1303. |
| [7] | FAN Lexiang, MA Ji, ZHOU Dengwen. Lightweight blind super-resolution network based on degradation separation [J]. Journal of Graphics, 2025, 46(6): 1304-1315. |
| [8] | WANG Haihan. Multi object detection method for surface defects of steel arch towers based on YOLOv8-OSRA [J]. Journal of Graphics, 2025, 46(6): 1327-1336. |
| [9] | ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning [J]. Journal of Graphics, 2025, 46(5): 998-1009. |
| [10] | WANG Ziyu, CAO Weiwei, CAO Yuzhu, LIU Meng, CHEN Jun, LIU Zhaobang, ZHENG Jian. Semi-supervised pulmonary airway segmentation based on dynamically decoupling intra-class regions [J]. Journal of Graphics, 2025, 46(4): 763-774. |
| [11] | WANG Daolei, DING Zijian, YANG Jun, ZHENG Shaokai, ZHU Rui, ZHAO Wenbin. Large scene reconstruction method based on voxel grid feature of NeRF [J]. Journal of Graphics, 2025, 46(3): 502-509. |
| [12] | SUN Hao, XIE Tao, HE Long, GUO Wenzhong, YU Yongfang, WU Qijun, WANG Jianwei, DONG Hui. Research on multimodal text-visual large model for robotic terrain perception algorithm [J]. Journal of Graphics, 2025, 46(3): 558-567. |
| [13] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
| [14] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
| [15] | ZHANG Tiansheng, ZHU Minfeng, REN Yiwen, WANG Chenhan, ZHANG Lidong, ZHANG Wei, CHEN Wei. BPA-SAM: box prompt augmented SAM for traditional Chinese realistic painting [J]. Journal of Graphics, 2025, 46(2): 322-331. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||