Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1247-1256.DOI: 10.11996/JG.j.2095-302X.2025061247
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHAO Zhenbing1,2,3(
), Ouyang Wenbin1, FENG Shuo1, LI Haopeng1,2, MA Jun4
Received:2025-01-04
Accepted:2025-04-16
Online:2025-12-30
Published:2025-12-27
About author:First author contact:ZHAO Zhenbing (1979-), professor, Ph.D. His main research interests cover computer vision technology in electric power system, etc. E-mail:zhaozhenbing@ncepu.edu.cn
Supported by:CLC Number:
ZHAO Zhenbing, Ouyang Wenbin, FENG Shuo, LI Haopeng, MA Jun. A thermal image detection method for insulators incorporating within-class sparse prior knowledge and improved YOLOv8[J]. Journal of Graphics, 2025, 46(6): 1247-1256.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061247
| 模型 | 标注方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|
| ① | 86.9 | 72.4 | 80.9 | 57.6 | 87.72 | |||
| RT-DETRr18 | ② | 88.9 | 77.6 | 85.5 | 59.9 | 75.19 | 56.9 | 19.9 |
| ③ | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | |||
| ① | 82.6 | 70.5 | 82.1 | 57.6 | 161.29 | |||
| YOLOv10n | ② | 80.0 | 75.7 | 82.2 | 56.4 | 123.46 | 8.2 | 2.7 |
| ③ | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | |||
| ① | 91.1 | 75.2 | 82.9 | 49.2 | 588.24 | |||
| YOLOv7t | ② | 87.9 | 78.5 | 85.1 | 54.0 | 555.56 | 13.0 | 6.0 |
| ③ | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | |||
| ① | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | |||
| YOLOV8n | ② | 87.6 | 80.6 | 88.0 | 61.4 | 151.52 | 8.1 | 3.0 |
| ③ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 |
Table 1 Experiments on sparse prior generality within-class
| 模型 | 标注方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|
| ① | 86.9 | 72.4 | 80.9 | 57.6 | 87.72 | |||
| RT-DETRr18 | ② | 88.9 | 77.6 | 85.5 | 59.9 | 75.19 | 56.9 | 19.9 |
| ③ | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | |||
| ① | 82.6 | 70.5 | 82.1 | 57.6 | 161.29 | |||
| YOLOv10n | ② | 80.0 | 75.7 | 82.2 | 56.4 | 123.46 | 8.2 | 2.7 |
| ③ | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | |||
| ① | 91.1 | 75.2 | 82.9 | 49.2 | 588.24 | |||
| YOLOv7t | ② | 87.9 | 78.5 | 85.1 | 54.0 | 555.56 | 13.0 | 6.0 |
| ③ | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | |||
| ① | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | |||
| YOLOV8n | ② | 87.6 | 80.6 | 88.0 | 61.4 | 151.52 | 8.1 | 3.0 |
| ③ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 |
| YOLOv8n | 类内稀疏先验 | RFD | Wise-MPDIoU | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|---|---|
| √ | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | 8.1 | 3.01 | |||
| √ | √ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 | 8.1 | 3.01 | ||
| √ | √ | √ | 93.5 | 86.2 | 92.1 | 63.9 | 121.95 | 8.1 | 3.02 | |
| √ | √ | √ | 95.6 | 85.8 | 92.4 | 64.1 | 144.93 | 9.6 | 3.01 | |
| √ | √ | √ | √ | 93.6 | 87.6 | 92.4 | 65.2 | 120.48 | 9.6 | 3.02 |
Table 2 The ablation experimental result of the model structure
| YOLOv8n | 类内稀疏先验 | RFD | Wise-MPDIoU | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|---|---|---|
| √ | 94.8 | 81.7 | 89.1 | 61.7 | 123.46 | 8.1 | 3.01 | |||
| √ | √ | 93.0 | 86.5 | 91.4 | 63.2 | 140.85 | 8.1 | 3.01 | ||
| √ | √ | √ | 93.5 | 86.2 | 92.1 | 63.9 | 121.95 | 8.1 | 3.02 | |
| √ | √ | √ | 95.6 | 85.8 | 92.4 | 64.1 | 144.93 | 9.6 | 3.01 | |
| √ | √ | √ | √ | 93.6 | 87.6 | 92.4 | 65.2 | 120.48 | 9.6 | 3.02 |
Fig. 7 Visualization of ablation results ((a) Original image; (b) Baseline; (c) Within-class sparse prior knowledge; (d) Within-class sparse prior knowledge and RFD; (e) Within-class sparse prior knowledge and Wise-MPDIoU; (f) Ours)
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| ODConv | 87.3 | 60.7 | 5.8 |
| HWD | 91.5 | 62.6 | 7.7 |
| WaveletPool | 91.1 | 63.4 | 7.4 |
| LDConv | 91.0 | 62.3 | 8.0 |
| RFD | 92.1 | 63.9 | 8.1 |
Table 3 Comparison results of different downsampling methods in YOLOv8
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| ODConv | 87.3 | 60.7 | 5.8 |
| HWD | 91.5 | 62.6 | 7.7 |
| WaveletPool | 91.1 | 63.4 | 7.4 |
| LDConv | 91.0 | 62.3 | 8.0 |
| RFD | 92.1 | 63.9 | 8.1 |
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| shapeIoU | 92.2 | 63.8 | 8.1 |
| focalerWIoU | 92.1 | 63.8 | 8.1 |
| SlideLoss | 91.9 | 63.8 | 8.1 |
| WIoU | 91.1 | 63.6 | 8.1 |
| MPDIoU | 92.1 | 63.7 | 8.1 |
| Wise-MPDIoU | 92.4 | 64.1 | 9.6 |
Table 4 Comparison of multiple loss functions in YOLOv8
| 方法 | AP50/% | AP50:95/% | GFLPOs |
|---|---|---|---|
| shapeIoU | 92.2 | 63.8 | 8.1 |
| focalerWIoU | 92.1 | 63.8 | 8.1 |
| SlideLoss | 91.9 | 63.8 | 8.1 |
| WIoU | 91.1 | 63.6 | 8.1 |
| MPDIoU | 92.1 | 63.7 | 8.1 |
| Wise-MPDIoU | 92.4 | 64.1 | 9.6 |
| 方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|
| YOLOv9 | 89.5 | 78.8 | 86.4 | 57.9 | 163.93 | 11.7 | 2.80 |
| RT-DETR | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | 56.9 | 19.90 |
| YOLOv10 | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | 8.2 | 2.70 |
| YOLOv5 | 93.7 | 83.4 | 89.7 | 56.7 | 250.00 | 4.1 | 1.80 |
| YOLOv7 | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | 13.0 | 6.00 |
| 本文方法 | 93.6 | 87.6 | 92.4 | 65.2 | 144.93 | 9.6 | 3.02 |
Table 5 Comparative test of multi-medium mainstream models
| 方法 | P | R | AP50/% | AP50:95/% | FPS/(帧·s-1) | GFLPOs | Parameters/M |
|---|---|---|---|---|---|---|---|
| YOLOv9 | 89.5 | 78.8 | 86.4 | 57.9 | 163.93 | 11.7 | 2.80 |
| RT-DETR | 92.3 | 78.4 | 87.9 | 62.2 | 90.91 | 56.9 | 19.90 |
| YOLOv10 | 84.5 | 79.9 | 86.7 | 60.4 | 151.52 | 8.2 | 2.70 |
| YOLOv5 | 93.7 | 83.4 | 89.7 | 56.7 | 250.00 | 4.1 | 1.80 |
| YOLOv7 | 89.8 | 82.2 | 87.1 | 54.8 | 555.56 | 13.0 | 6.00 |
| 本文方法 | 93.6 | 87.6 | 92.4 | 65.2 | 144.93 | 9.6 | 3.02 |
| [1] | 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40(17): 5506-5515. |
| HE J H, LUO G M, CHENG M X, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40(17): 5506-5515 (in Chinese). | |
| [2] | 徐舒玮, 邱才明, 张东霞, 等. 基于深度学习的输电线路故障类型辨识[J]. 中国电机工程学报, 2019, 39(1): 65-74. |
| XU S W, QIU C M, ZHANG D X, et al. A deep learning approach for fault type identification of transmission line[J]. Proceedings of the CSEE, 2019, 39(1): 65-74 (in Chinese). | |
| [3] | 赵振兵, 冯烁, 赵文清, 等. 融合知识迁移和改进YOLOv6的变电设备热像检测方法[J]. 智能系统学报, 2023, 18(6): 1213-1222. |
| ZHAO Z B, FENG S, ZHAO W Q, et al. Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J]. CAAI Transactions on Intelligent Systems, 2023, 18(6): 1213-1222 (in Chinese). | |
| [4] | 张血琴, 周志鹏, 郭裕钧, 等. 不同材质绝缘子污秽等级高光谱检测方法研究[J]. 电工技术学报, 2023, 38(7): 1946-1955. |
| ZHANG X Q, ZHOU Z P, GUO Y J, et al. Detection method of contamination grades of insulators with different materials based on hyperspectral technique[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1946-1955 (in Chinese). | |
| [5] | 赵振兵, 孔英会, 戚银城, 等. 面向智能输变电的图像处理技术[M]. 北京: 中国电力出版社, 2014: 1-4. |
| ZHAO Z B, KONG Y H, QI Y C, et al. Image processing technology for intelligent power transmission and transformation[M]. Beijing: China Electric Power Press, 2014: 1-4 (in Chinese). | |
| [6] | 刘传洋, 吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展[J]. 中国电机工程学报, 2025, 45(6): 2171-2195. |
| LIU C Y, WU Y Q. Research progress of power equipment identification and thermal fault diagnosis based on infrared images[J]. Proceedings of the CSEE, 2025, 45(6): 2171-2195 (in Chinese). | |
| [7] |
ZHENG H B, CUI Y H, YANG W Q, et al. An infrared image detection method of substation equipment combining iresgroup structure and CenterNet[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4757-4765.
DOI URL |
| [8] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1904.07850. |
| [9] |
HE H Y, HU Z, WANG B Z, et al. A contactless zero-value insulators detection method based on infrared images matching[J]. IEEE Access, 2020, 8: 133882-133889.
DOI URL |
| [10] | ZHOU S J, LIU J F, FAN X H, et al. Thermal fault diagnosis of electrical equipment in substations using lightweight convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5005709. |
| [11] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
| [12] |
YIN J G, LU Y P, GONG Z X, et al. Edge detection of high-voltage porcelain insulators in infrared image using dual parity morphological gradients[J]. IEEE Access, 2019, 7: 32728-32734.
DOI URL |
| [13] |
ZHAO Z B, FENG S, MA D Y, et al. A weakly supervised instance segmentation approach for insulator thermal images incorporating sparse prior knowledge[J]. IEEE Transactions on Power Delivery, 2024, 39(5): 2693-2703.
DOI URL |
| [14] | 赵振兵, 郭广学, 王艺衡, 等. 融合边缘感知与统计纹理知识的输电线路金具锈蚀检测[J]. 智能系统学报, 2024, 19(5): 1228-1237. |
| ZHAO Z B, GUO G X, WANG Y H, et al. Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J]. CAAI Transactions on Intelligent Systems, 2024, 19(5): 1228-1237 (in Chinese). | |
| [15] |
李刚, 蔡泽浩, 孙华勋, 等. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986.
DOI |
|
LI G, CAI Z H, SUN H X, et al. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion[J]. Journal of Graphics, 2024, 45(5): 979-986 (in Chinese).
DOI |
|
| [16] |
HAO S, AN B Y, MA X, et al. PKAMNet: a transmission line insulator parallel- gap fault detection network based on prior knowledge transfer and attention mechanism[J]. IEEE Transactions on Power Delivery, 2023, 38(5): 3387-3397.
DOI URL |
| [17] |
ZHAO Z B, LIU N, WANG L. Localization of multiple insulators by orientation angle detection and binary shape prior knowledge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3421-3428.
DOI URL |
| [18] |
ZHENG H B, SUN Y H, LIU X H, et al. Infrared image detection of substation insulators using an improved fusion single shot multibox detector[J]. IEEE Transactions on Power Delivery, 2021, 36(6): 3351-3359.
DOI URL |
| [19] |
ZHENG H B, LIU Y, SUN Y H, et al. Arbitrary-oriented detection of insulators in thermal imagery via rotation region network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5242-5252.
DOI URL |
| [20] | LIU X L, RAO Z Y, ZHANG Y X, et al. UAVs images based real-time insulator defect detection with transformer deep learning[C]// 2023 IEEE International Conference on Robotics and Biomimetics. New York: IEEE Press, 2023: 1-6. |
| [21] | GUO Z Y, ZHU T, ZHANG X Y, et al. Infrared insulator object detection algorithm based on improved deformable DETR[C]// The 10th International Forum on Electrical Engineering and Automation. New York: IEEE Press, 2023: 147-151. |
| [22] | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. (2021-05-18) [2024-11-03]. https://arxiv.org/abs/2010.04159.pdf. |
| [23] | LU W, CHEN S B, TANG J, et al. A robust feature downsampling module for remote-sensing visual tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4404312. |
| [24] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
| [25] | 李文璞, 毛颖科, 廖逍, 等. 基于旋转目标检测的变电设备红外图像电压致热型缺陷智能诊断方法[J]. 高电压技术, 2021, 47(9): 3246-3253. |
| LI W P, MAO Y K, LIAO X, et al. Intelligent diagnosis method of infrared image for substation equipment voltage type thermal defects based on rotating target detection[J]. High Voltage Engineering, 2021, 47(9): 3246-3253 (in Chinese). | |
| [26] | 王有元, 李后英, 梁玄鸿, 等. 基于红外图像的变电设备热缺陷自调整残差网络诊断模型[J]. 高电压技术, 2020, 46(9): 3000-3007. |
| WANG Y Y, LI H Y, LIANG X H, et al. Self-adjusting residual network diagnosis model for substation equipment thermal defects based on infrared image[J]. High Voltage Engineering, 2020, 46(9): 3000-3007 (in Chinese). | |
| [27] | SELVARAJU R R, DAS A, VEDANTAM R, et al. Grad-CAM: why did you say that?[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1611.07450. |
| [28] | 王海群, 魏培旭, 解浩龙, 等. 基于改进YOLOv8的红外船舶检测[J]. 电光与控制, 2025, 32(1): 61-67. |
| WANG H Q, WEI P X, XIE H L, et al. Infrared ship detection based on improved YOLOv8[J]. Electronics Optics & Control, 2025, 32(1): 61-67 (in Chinese). | |
| [29] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI |
|
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI |
|
| [30] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
| WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
| [31] | 易磊, 黄哲玮, 易雅雯. 改进YOLOv8的输电线路异物检测方法[J]. 电子测量技术, 2024, 47(15): 125-134. |
| YI L, HUANG Z W, YI Y W. Improved YOLOv8 foreign object detection method for transmission lines[J]. Electronic Measurement Technology, 2024, 47(15): 125-134 (in Chinese). | |
| [32] | TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-08-08) [2024-11-03]. https://arxiv.org/abs/2301.10051. |
| [33] | MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. (2024-08-20) [2024-11-03]. https://arxiv.org/abs/2307.07662. |
| [34] | HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2024-08-20]. https://arxiv.org/abs/1606.08415. |
| [35] | WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2405.14458. |
| [36] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
| [37] | LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2209.07947. |
| [38] |
XU G P, LIAO W T, ZHANG X, et al. Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819.
DOI URL |
| [39] | NING J L, SPRATLING M. The importance of anti-aliasing in tiny object detection[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2310.14221. |
| [40] |
ZHANG X, SONG Y Z, SONG T T, et al. LDConv: linear deformable convolution for improving convolutional neural networks[J]. Image and Vision Computing, 2024, 149: 105190.
DOI URL |
| [41] | ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. [2024-04-01]. https://arxiv.org/abs/2312.17663. |
| [42] | ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[EB/OL]. [2024-08-20]. https://arxiv.org/abs/2401.10525. |
| [43] |
YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
DOI URL |
| [44] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL]. [2024-08-20]. https://doi.org/10.48550/arXiv.2402.13616. |
| [1] | JU Chen, DING Jiaxin, WANG Zexing, LI Guangzhao, GUAN Zhenxiang, ZHANG Changyou. Graph neural network-based method for approximating finite element shape functions [J]. Journal of Graphics, 2025, 46(6): 1161-1171. |
| [2] | YI Bin, ZHANG Libin, LIU Danying, TANG Jun, FANG Junjun, LI Wenqi. Prediction model of laser drilling ventilation rate in cigarette manufacturing process based on AMTA-Net [J]. Journal of Graphics, 2025, 46(6): 1224-1232. |
| [3] | BO Wen, JU Chen, LIU Weiqing, ZHANG Yan, HU Jingjing, CHENG Jinghan, ZHANG Changyou. Degradation-driven temporal modeling method for equipment maintenance interval prediction [J]. Journal of Graphics, 2025, 46(6): 1233-1246. |
| [4] | HE Mengmeng, ZHANG Xiaoyan, LI Hongan. Lightweight skin lesion image segmentation network based on Mamba structure [J]. Journal of Graphics, 2025, 46(6): 1257-1266. |
| [5] | LI Xingchen, LI Zongmin, YANG Chaozhi. Test-time adaptation algorithm based on trusted pseudo-label fine-tuning [J]. Journal of Graphics, 2025, 46(6): 1292-1303. |
| [6] | FAN Lexiang, MA Ji, ZHOU Dengwen. Lightweight blind super-resolution network based on degradation separation [J]. Journal of Graphics, 2025, 46(6): 1304-1315. |
| [7] | WANG Haihan. Multi object detection method for surface defects of steel arch towers based on YOLOv8-OSRA [J]. Journal of Graphics, 2025, 46(6): 1327-1336. |
| [8] | ZHAI Yongjie, ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming, ZHAO Xiaoyu. Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection [J]. Journal of Graphics, 2025, 46(5): 950-959. |
| [9] | ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning [J]. Journal of Graphics, 2025, 46(5): 998-1009. |
| [10] | GUO Ruidong, LAN Guiwen, FAN Donglin, ZHONG Zhan, XU Zirui, REN Xinyue. An object detection algorithm for powerline inspection based on the feature focus & diffusion network [J]. Journal of Graphics, 2025, 46(4): 719-726. |
| [11] | WANG Ziyu, CAO Weiwei, CAO Yuzhu, LIU Meng, CHEN Jun, LIU Zhaobang, ZHENG Jian. Semi-supervised pulmonary airway segmentation based on dynamically decoupling intra-class regions [J]. Journal of Graphics, 2025, 46(4): 763-774. |
| [12] | WANG Daolei, DING Zijian, YANG Jun, ZHENG Shaokai, ZHU Rui, ZHAO Wenbin. Large scene reconstruction method based on voxel grid feature of NeRF [J]. Journal of Graphics, 2025, 46(3): 502-509. |
| [13] | SUN Hao, XIE Tao, HE Long, GUO Wenzhong, YU Yongfang, WU Qijun, WANG Jianwei, DONG Hui. Research on multimodal text-visual large model for robotic terrain perception algorithm [J]. Journal of Graphics, 2025, 46(3): 558-567. |
| [14] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
| [15] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||