Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1267-1273.DOI: 10.11996/JG.j.2095-302X.2025061267
• Image Processing and Computer Vision • Previous Articles Next Articles
YU Nannan1,2(
), MENG Zhengyu1,2, FANG Youjiang1,2, SUN Chuanyu1,2, YIN Xuefeng1,2, ZHANG Qiang1,2, WEI Xiaopeng1,2, YANG Xin1,2(
)
Received:2024-10-09
Accepted:2025-04-16
Online:2025-12-30
Published:2025-12-27
Contact:
YANG Xin
About author:First author contact:YU Nannan (1993-), PhD candidate. Her main research interest covers event-based computer vision. E-mail:12009059@mail.dlut.edu.cn
Supported by:CLC Number:
YU Nannan, MENG Zhengyu, FANG Youjiang, SUN Chuanyu, YIN Xuefeng, ZHANG Qiang, WEI Xiaopeng, YANG Xin. Frequency-aware hypergraph fusion for event-based semantic segmentation[J]. Journal of Graphics, 2025, 46(6): 1267-1273.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061267
| 方法 | MPA | mIoU |
|---|---|---|
| FCN | 80.86 | 72.00 |
| UNet | 82.89 | 74.87 |
| PSPNet | 84.36 | 76.35 |
| DeepLab v3+ | 81.53 | 75.03 |
| E2VID | 51.50 | 39.59 |
| Ev-SegNet | 86.04 | 80.25 |
| VID2E | 87.12 | 80.71 |
| SETR | 81.77 | 73.78 |
| SegFormer | 85.66 | 79.75 |
| Swin-UperNet | 86.61 | 80.73 |
| EVISS | 87.89 | 81.93 |
| AFFormer | 87.36 | 81.54 |
| Ours | 88.21 | 82.68 |
Table 1 Comparison of quantitative indicators in carla semantic dataset/%
| 方法 | MPA | mIoU |
|---|---|---|
| FCN | 80.86 | 72.00 |
| UNet | 82.89 | 74.87 |
| PSPNet | 84.36 | 76.35 |
| DeepLab v3+ | 81.53 | 75.03 |
| E2VID | 51.50 | 39.59 |
| Ev-SegNet | 86.04 | 80.25 |
| VID2E | 87.12 | 80.71 |
| SETR | 81.77 | 73.78 |
| SegFormer | 85.66 | 79.75 |
| Swin-UperNet | 86.61 | 80.73 |
| EVISS | 87.89 | 81.93 |
| AFFormer | 87.36 | 81.54 |
| Ours | 88.21 | 82.68 |
Fig. 3 Comparison of visualization results on the Carla-Semantic dataset ((a) RGB frame; (b) Event frame; (c) Ground-truth labels; (d) Swin-UperNet; (e) EVISS; (f) Ours)
| 方法 | mIoU |
|---|---|
| E2VID | 44.77±3.70 |
| Ev-SegNet | 54.81 |
| VID2E | 56.01 |
| EVISS | 57.64 |
| AFFormer | 52.46 |
| Ours | 58.95 |
Table 2 Comparison of quantitative indicators in DDD17-Semantic dataset/%
| 方法 | mIoU |
|---|---|
| E2VID | 44.77±3.70 |
| Ev-SegNet | 54.81 |
| VID2E | 56.01 |
| EVISS | 57.64 |
| AFFormer | 52.46 |
| Ours | 58.95 |
| 方法 | DMFF | MFHGA | MPA/% | mIoU/% |
|---|---|---|---|---|
| Ours | 78.81 | 71.54 | ||
| Ours | √ | 79.44 | 72.35 | |
| Ours | √ | 87.56 | 81.73 | |
| Ours | √ | √ | 88.21 | 82.68 |
Table 3 Quantitative indicators of ablation experiment
| 方法 | DMFF | MFHGA | MPA/% | mIoU/% |
|---|---|---|---|---|
| Ours | 78.81 | 71.54 | ||
| Ours | √ | 79.44 | 72.35 | |
| Ours | √ | 87.56 | 81.73 | |
| Ours | √ | √ | 88.21 | 82.68 |
| [1] | ALONSO I, MURILLO A C. EV-SegNet: semantic segmentation for event-based cameras[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2019: 1624-1633. |
| [2] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
| [3] | GEHRIG D, GEHRIG M, HIDALGO-CARRIÓ J, et al. Video to events: recycling video datasets for event cameras[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3583-3592. |
| [4] |
REBECQ H, RANFTL R, KOLTUN V, et al. High speed and high dynamic range video with an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 1964-1980.
DOI URL |
| [5] |
MUNDA G, REINBACHER C, POCK T. Real-time intensity-image reconstruction for event cameras using manifold regularisation[J]. International Journal of Computer Vision, 2018, 126(12): 1381-1393.
DOI |
| [6] | HU Y H, DELBRUCK T, LIU S C. Learning to exploit multiple vision modalities by using grafted networks[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 85-101. |
| [7] | 王超毅, 于男男, 乔羽, 等. 基于事件相机的图像语义分割方法[EB/OL]. [2024-10-08]. http://kns.cnki.net/kcms/detail/11.2925.tp.20241008.1600.005.html. |
| WANG C Y, YU N N, QIAO Y, et al. Event-based image semantic segmentation[EB/OL]. [2024-10-08]. http://kns.cnki.net/kcms/detail/11.2925.tp.20241008.1600.005.html. (in Chinese). | |
| [8] | HUANG Y C, LIU Q S, METAXAS D. Video object segmentation by hypergraph cut[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 1738-1745. |
| [9] | HUANG Y C, LIU Q S, ZHANG S T, et al. Image retrieval via probabilistic hypergraph ranking[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2010: 3376-3383. |
| [10] |
GAO Y, WANG M, TAO D C, et al. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4290-4303.
DOI PMID |
| [11] | ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning with hypergraphs: clustering, classification, and embedding[C]// The 20th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 1601-1608. |
| [12] | CHEN F H, GAO Y, CAO D L, et al. Multimodal hypergraph learning for microblog sentiment prediction[C]// 2015 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2015: 1-6. |
| [13] |
JI R R, CHEN F H, CAO L J, et al. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning[J]. IEEE Transactions on Multimedia, 2019, 21(4): 1062-1075.
DOI URL |
| [14] | ZHANG Z Z, LIN H J, GAO Y. Dynamic hypergraph structure learning[EB/OL]. [2024-08-09]. https://www.ijcai.org/Proceedings/2018/0439.pdf |
| [15] | FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// The 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565. |
| [16] | ZHONG Y J, LI B, TANG L, et al. Detecting camouflaged object in frequency domain[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 4494-4503. |
| [17] | QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103. |
| [18] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03) [2024-07-10]. https://arxiv.org/abs/2010.11929. |
| [19] | BINAS J, NEIL D, LIU S C, et al. DDD17:end-to-end DAVIS driving dataset[EB/OL]. (2017-11-04) [2024-07-10]. https://arxiv.org/abs/1711.01458. |
| [20] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
| [21] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6230-6239. |
| [22] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder- decoder with atrous separable convolution for semantic image segmentation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851. |
| [23] | ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 6877-6886. |
| [24] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9992-10002. |
| [25] | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// The 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 12077-12090. |
| [26] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440. |
| [27] | DONG B, WANG P C, WANG F. Head-free lightweight semantic segmentation with linear transformer[C]// The 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 516-524. |
| [1] | BO Wen, JU Chen, LIU Weiqing, ZHANG Yan, HU Jingjing, CHENG Jinghan, ZHANG Changyou. Degradation-driven temporal modeling method for equipment maintenance interval prediction [J]. Journal of Graphics, 2025, 46(6): 1233-1246. |
| [2] | ZHANG Xinyun, ZHANG Liwen, ZHOU Li, LUO Xiaonan. Coffee fruit maturity prediction model based on image blocking interaction [J]. Journal of Graphics, 2025, 46(6): 1274-1280. |
| [3] | XIAO Kai, YUAN Ling, CHU Jun. Unsupervised cycle-consistent learning with dynamic memory-augmented for unmanned aerial vehicle videos tracking [J]. Journal of Graphics, 2025, 46(6): 1281-1291. |
| [4] | CAO Lujing, LU Peng. A video colorization method based on multiple reference images [J]. Journal of Graphics, 2025, 46(6): 1316-1326. |
| [5] | LIU Yuanyuan, FANG Youjiang, MENG Tianyu, MENG Zhengyu, LUO Pengwei, YANG Peigen, JIANG Yutong, WEI Xiaopeng, ZHANG Qiang, YANG Xin. Geometry hypergraph aware 3D scene graph generation [J]. Journal of Graphics, 2025, 46(6): 1337-1345. |
| [6] | LIU Bokai, YIN Xuefeng, SUN Chuanyu, GE Huilin, WEI Ziqi, JIANG Yutong, PIAO Haiyin, ZHOU Dongsheng, YANG Xin. Research on UAV three-dimensional scene navigation based on deep reinforcement learning [J]. Journal of Graphics, 2025, 46(5): 1010-1017. |
| [7] | ZUO Yuqi, ZHANG Yunfeng, ZHANG Qiuyue, XU Yingcheng. Knowledge-aware recommendation based on hypergraph representation learning and Transformer model optimization [J]. Journal of Graphics, 2025, 46(5): 1050-1060. |
| [8] | ZHAI Yongjie, ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming, ZHAO Xiaoyu. Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection [J]. Journal of Graphics, 2025, 46(5): 950-959. |
| [9] | ZHU Hongmiao, ZHONG Guojie, ZHANG Yanci. Semantic segmentation of small-scale point clouds based on integration of mean shift and deep learning [J]. Journal of Graphics, 2025, 46(5): 998-1009. |
| [10] | CHEN Dong, LI Changlong, DU Zhenlong, SONG Shuang, LI Xiaoli. Intelligent depiction to illumination and shadow: robust video shadow extraction based on SAM [J]. Journal of Graphics, 2025, 46(4): 739-745. |
| [11] | YANG Jiaxi, YU Letian, BAO Qirui, BI Sheng, MA Xiaodou, Yang Shengqi, JIANG Yutong, FANG Jianru, WEI Xiaopeng, YANG Xin. Object depth estimation methods for high photon flux environments [J]. Journal of Graphics, 2025, 46(4): 756-762. |
| [12] | NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(3): 532-541. |
| [13] | CUI Lisha, SONG Zhiwen, JIANG Xiaoheng, MA Xin, CHEN Enqing, XU Mingliang. An edge and sematic-aware segmentation network for defect detection [J]. Journal of Graphics, 2025, 46(3): 578-587. |
| [14] | YU Bing, CHENG Guang, HUANG Dongjin, DING Youdong. 3D human mesh reconstruction based on dual-stream network fusion [J]. Journal of Graphics, 2025, 46(3): 625-634. |
| [15] | LEI Yulin, LIU Ligang. Transport-and-packing with buffer via deep reinforcement learning [J]. Journal of Graphics, 2025, 46(3): 697-708. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||