Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1274-1280.DOI: 10.11996/JG.j.2095-302X.2025061274
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Xinyun(
), ZHANG Liwen, ZHOU Li, LUO Xiaonan(
)
Received:2025-03-13
Accepted:2025-04-23
Online:2025-12-30
Published:2025-12-27
Contact:
LUO Xiaonan
About author:First author contact:ZHANG Xinyun (1997-), master student. Her main research interests cover digital image processing and speech processing. E-mail:wxqys178@163.com
Supported by:CLC Number:
ZHANG Xinyun, ZHANG Liwen, ZHOU Li, LUO Xiaonan. Coffee fruit maturity prediction model based on image blocking interaction[J]. Journal of Graphics, 2025, 46(6): 1274-1280.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061274
| 参数名称 | 参数值 |
|---|---|
| 图像分辨率 | 640×640 |
| 优化器 | Adam |
| Epoch | 300 |
| Batch-size | 16 |
| 初始学习率 | 0.001 |
Table 1 Training parameters settings
| 参数名称 | 参数值 |
|---|---|
| 图像分辨率 | 640×640 |
| 优化器 | Adam |
| Epoch | 300 |
| Batch-size | 16 |
| 初始学习率 | 0.001 |
| 方法 | 位置 | |||
|---|---|---|---|---|
| CSP1_1 | CSP1_2 | SSPF | mAP50/% | |
| YOLOv5+SBIAM | 86.2 | |||
| YOLOv5+SBIAM | $\text { ✓ }$ | 88.8 | ||
| YOLOv5+SBIAM | $\text { ✓ }$ | 88.9 | ||
| YOLOv5+SBIAM | $\text { ✓ }$ | 89.4 | ||
Table 2 Results of SBIAM modules added in different locations
| 方法 | 位置 | |||
|---|---|---|---|---|
| CSP1_1 | CSP1_2 | SSPF | mAP50/% | |
| YOLOv5+SBIAM | 86.2 | |||
| YOLOv5+SBIAM | $\text { ✓ }$ | 88.8 | ||
| YOLOv5+SBIAM | $\text { ✓ }$ | 88.9 | ||
| YOLOv5+SBIAM | $\text { ✓ }$ | 89.4 | ||
| 方法 | GFLOPS | Params/M | P/% | R/% | F1/% | mAP50/% |
|---|---|---|---|---|---|---|
| YOLOv5 | 15.9 | 7.02 | 82.7 | 81.5 | 82.1 | 86.2 |
| YOLOv5+SE | 26.4 | 11.14 | 84.4 | 80.0 | 82.2 | 87.6 |
| YOLOv5+CA | 17.6 | 8.96 | 87.2 | 82.8 | 84.9 | 88.8 |
| YOLOv5+CBAM | 49.7 | 21.10 | 88.4 | 81.0 | 84.5 | 89.0 |
| YOLOv5+SBIAM | 19.8 | 9.63 | 89.1 | 82.7 | 85.8 | 89.4 |
Table 3 Comparison with other attention modules
| 方法 | GFLOPS | Params/M | P/% | R/% | F1/% | mAP50/% |
|---|---|---|---|---|---|---|
| YOLOv5 | 15.9 | 7.02 | 82.7 | 81.5 | 82.1 | 86.2 |
| YOLOv5+SE | 26.4 | 11.14 | 84.4 | 80.0 | 82.2 | 87.6 |
| YOLOv5+CA | 17.6 | 8.96 | 87.2 | 82.8 | 84.9 | 88.8 |
| YOLOv5+CBAM | 49.7 | 21.10 | 88.4 | 81.0 | 84.5 | 89.0 |
| YOLOv5+SBIAM | 19.8 | 9.63 | 89.1 | 82.7 | 85.8 | 89.4 |
| 方法 | P | R | mAP50 |
|---|---|---|---|
| YOLOv5 | 82.7 | 81.5 | 86.2 |
| +NWD | 84.3 | 78.3 | 86.7 |
| +SBIAM | 89.1 | 82.7 | 89.4 |
| Ours | 90.1 | 82.4 | 89.8 |
Table 4 Aablation experiment/%
| 方法 | P | R | mAP50 |
|---|---|---|---|
| YOLOv5 | 82.7 | 81.5 | 86.2 |
| +NWD | 84.3 | 78.3 | 86.7 |
| +SBIAM | 89.1 | 82.7 | 89.4 |
| Ours | 90.1 | 82.4 | 89.8 |
| 方法 | Params/M | P/% | R/% | mAP50/% |
|---|---|---|---|---|
| YOLOv4 | 8.13 | 74.0 | 76.6 | 81.3 |
| DETR | 35.04 | 84.4 | 74.0 | 83.5 |
| NanoDet | 7.50 | 83.6 | 73.1 | 82.9 |
| Faster R-CNN | 36.14 | 87.6 | 82.4 | 88.9 |
| RetinaNet | 41.23 | 86.1 | 72.2 | 83.2 |
| Mask R-CNN | 38.65 | 88.8 | 83.7 | 89.5 |
| Ours | 9.63 | 90.1 | 82.4 | 89.8 |
Table 5 Algorithm comparison experiment
| 方法 | Params/M | P/% | R/% | mAP50/% |
|---|---|---|---|---|
| YOLOv4 | 8.13 | 74.0 | 76.6 | 81.3 |
| DETR | 35.04 | 84.4 | 74.0 | 83.5 |
| NanoDet | 7.50 | 83.6 | 73.1 | 82.9 |
| Faster R-CNN | 36.14 | 87.6 | 82.4 | 88.9 |
| RetinaNet | 41.23 | 86.1 | 72.2 | 83.2 |
| Mask R-CNN | 38.65 | 88.8 | 83.7 | 89.5 |
| Ours | 9.63 | 90.1 | 82.4 | 89.8 |
| [1] | DOS SANTOS F F L, ROSAS J T F, MARTINS R N, et al. Quality assessment of coffee beans through computer vision and machine learning algorithms[J]. Coffee Science, 2020, 15(1): e151752. |
| [2] | JANANDI R, CENGGORO T W. An implementation of convolutional neural network for coffee beans quality classification in a mobile information system[C]// 2020 International Conference on Information Management and Technology. New York: IEEE Press, 2020: 218-222. |
| [3] | 武瑞瑞, 李贵平, 王雪松, 等. 咖啡湿法加工过程中影响品质的因素分析[J]. 热带农业工程, 2012, 36(5): 1-3. |
| WU R R, LI G P, WANG X S, et al. Factors Affecting the Quality of Coffee in Wet Processing[J]. Tropical Agricultural Engineering, 2012, 36(5): 1-3 (in Chinese). | |
| [4] | 吕玉兰, 黄家雄, 武瑞瑞, 等. 不同海拔咖啡生境与品质研究[J]. 热带农业科技, 2025, 48(1): 34-38. |
| LV Y L, HUANG J X, WU R R, et al. Study on the Habitat and Quality of Coffee at Different Altitudes[J]. Tropical Agricultural Science & Technology, 2025, 48(1): 34-38 (in Chinese). | |
| [5] | 冯桂蓉, 谢姣, 邓丽莉, 等. 柑橘果实萜烯类挥发性物质研究进展[J]. 食品与机械, 2017, 33(10): 200-204. |
| FENG G R, XIE J, DENG L L, et al. Progress on terpenoid volatiles in citrus fruits[J]. Food & Machinery, 2017, 33(10): 200-204 (in Chinese). | |
| [6] |
TAMAYO-MONSALVE M A, MERCADO-RUIZ E, VILLA-PULGARIN J P, et al. Coffee maturity classification using convolutional neural networks and transfer learning[J]. IEEE Access, 2022, 10: 42971-42982.
DOI URL |
| [7] |
LE Q T, DANG K B, GIANG T L, et al. Deep learning model development for detecting coffee tree changes based on Sentinel-2 imagery in Vietnam[J]. IEEE Access, 2022, 10: 109097-109107.
DOI URL |
| [8] | 李亚麒, 娄予强, 何红艳, 等. 咖啡果实不同成熟度对其品质的影响[J]. 种子, 2022, 41(12): 78-84, 92. |
| LI Y G, LOU Y Q, HE H Y, et al. Effect of different maturity on fruit quality of coffee[J]. Seed, 2022, 41(12): 78-84, 92 (in Chinese). | |
| [9] |
郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464.
DOI |
| HAO P F, LIU L Q, GU R Y. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model[J]. Journal of Graphics, 2023, 44(3): 456-464 (in Chinese). | |
| [10] | 赵茜, 苗玥, 季圣阳, 等. 咖啡豆品质评价体系构建及国产咖啡豆品质评价[J]. 食品科学, 2024, 45(3): 193-202. |
|
ZHAO X, MIAO Y, JI S Y, et al. Construction of quality evaluation systems for coffee beans and their application to Chinese coffee beans[J]. Food Science, 2024, 45(3): 193-202 (in Chinese).
DOI |
|
| [11] | 郑昊, 魏霖静. 基于深度学习的咖啡果实成熟度检测方法[J]. 软件工程, 2025, 28(2): 32-36, 41. |
| ZHENG H, WEI L J. A deep learning-based method for detecting the ripeness of coffee fruits[J]. Software Engineering, 2025, 28(2): 32-36, 41 (in Chinese). | |
| [12] | 李琼, 考月英, 张莹, 等. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
| LI Q, KAO Y Y, ZHANG Y, et al. Review on object detection in UAV aerial images[J]. Journal of Graphics, 2024, 45(6): 1145-1164 (in Chinese). | |
| [13] |
ERON F, NOMAN M, DE OLIVEIRA R R, et al. Computer vision-aided intelligent monitoring of coffee: towards sustainable coffee production[J]. Scientia Horticulturae, 2024, 327: 112847.
DOI URL |
| [14] | BAZAME H C, MOLIN J P, ALTHOFF D, et al. Detection of coffee fruits on tree branches using computer vision[J]. Scientia Agricola, 2022, 80: e20220064. |
| [15] | VELÁSQUEZ S, FRANCO A P, PEÑA N, et al. Classification of the maturity stage of coffee cherries using comparative feature and machine learning[J]. Coffee Science, 2021, 16: e161710. |
| [16] | DHIYA U I, HIDAYAT M A, DHARMAWAN T. Classification of coffee fruit maturity level based on multispectral image using naïve Bayes method[J]. Journal Ilmu Komputer dan Informasi, 2024, 17(2): 121-126. |
| [17] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13713-13722. |
| [18] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
| [19] | WANG J W, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J/OL]. [2024-11-13]. https://arxiv.org/abs/2110.13389. |
| [20] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
| LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666 (in Chinese). | |
| [21] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
| [1] | BO Wen, JU Chen, LIU Weiqing, ZHANG Yan, HU Jingjing, CHENG Jinghan, ZHANG Changyou. Degradation-driven temporal modeling method for equipment maintenance interval prediction [J]. Journal of Graphics, 2025, 46(6): 1233-1246. |
| [2] | YU Nannan, MENG Zhengyu, FANG Youjiang, SUN Chuanyu, YIN Xuefeng, ZHANG Qiang, WEI Xiaopeng, YANG Xin. Frequency-aware hypergraph fusion for event-based semantic segmentation [J]. Journal of Graphics, 2025, 46(6): 1267-1273. |
| [3] | XIAO Kai, YUAN Ling, CHU Jun. Unsupervised cycle-consistent learning with dynamic memory-augmented for unmanned aerial vehicle videos tracking [J]. Journal of Graphics, 2025, 46(6): 1281-1291. |
| [4] | CAO Lujing, LU Peng. A video colorization method based on multiple reference images [J]. Journal of Graphics, 2025, 46(6): 1316-1326. |
| [5] | LIU Bokai, YIN Xuefeng, SUN Chuanyu, GE Huilin, WEI Ziqi, JIANG Yutong, PIAO Haiyin, ZHOU Dongsheng, YANG Xin. Research on UAV three-dimensional scene navigation based on deep reinforcement learning [J]. Journal of Graphics, 2025, 46(5): 1010-1017. |
| [6] | ZUO Yuqi, ZHANG Yunfeng, ZHANG Qiuyue, XU Yingcheng. Knowledge-aware recommendation based on hypergraph representation learning and Transformer model optimization [J]. Journal of Graphics, 2025, 46(5): 1050-1060. |
| [7] | ZHAI Yongjie, ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming, ZHAO Xiaoyu. Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection [J]. Journal of Graphics, 2025, 46(5): 950-959. |
| [8] | YANG Jiaxi, YU Letian, BAO Qirui, BI Sheng, MA Xiaodou, Yang Shengqi, JIANG Yutong, FANG Jianru, WEI Xiaopeng, YANG Xin. Object depth estimation methods for high photon flux environments [J]. Journal of Graphics, 2025, 46(4): 756-762. |
| [9] | NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(3): 532-541. |
| [10] | YU Bing, CHENG Guang, HUANG Dongjin, DING Youdong. 3D human mesh reconstruction based on dual-stream network fusion [J]. Journal of Graphics, 2025, 46(3): 625-634. |
| [11] | LEI Yulin, LIU Ligang. Transport-and-packing with buffer via deep reinforcement learning [J]. Journal of Graphics, 2025, 46(3): 697-708. |
| [12] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
| [13] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
| [14] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
| [15] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||