Journal of Graphics ›› 2025, Vol. 46 ›› Issue (6): 1281-1291.DOI: 10.11996/JG.j.2095-302X.2025061281
Previous Articles Next Articles
XIAO Kai1,2(
), YUAN Ling1,2, CHU Jun1,2(
)
Received:2025-03-06
Accepted:2025-05-07
Online:2025-12-30
Published:2025-12-27
Contact:
CHU Jun
About author:First author contact:XIAO Kai (1999-), master student. His main research interests cover object tracking and unsupervised learning. E-mail:xiaok9900@163.com
Supported by:CLC Number:
XIAO Kai, YUAN Ling, CHU Jun. Unsupervised cycle-consistent learning with dynamic memory-augmented for unmanned aerial vehicle videos tracking[J]. Journal of Graphics, 2025, 46(6): 1281-1291.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025061281
| 方法 | 光流 方法 | 显著性 检测 | 图像 熵DP | IOU得分 | |
|---|---|---|---|---|---|
| UAV123 | UAV20L | ||||
| Baseline | √ | 0.284 | 0.277 | ||
| Ours | √ | √ | 0.391 | 0.330 | |
| Ours | √ | √ | 0.401 | 0.393 | |
| Ours | √ | √ | 0.368 | 0.408 | |
| Ours | √ | √ | √ | 0.547 | 0.503 |
Table 1 Quality evaluation of pseudo-label generation
| 方法 | 光流 方法 | 显著性 检测 | 图像 熵DP | IOU得分 | |
|---|---|---|---|---|---|
| UAV123 | UAV20L | ||||
| Baseline | √ | 0.284 | 0.277 | ||
| Ours | √ | √ | 0.391 | 0.330 | |
| Ours | √ | √ | 0.401 | 0.393 | |
| Ours | √ | √ | 0.368 | 0.408 | |
| Ours | √ | √ | √ | 0.547 | 0.503 |
| 跟踪器 | 视频利用率η |
|---|---|
| USOT[ | 36.7 |
| UTC-DMT (Ours) | 72.9 |
Table 2 Video utilization/%
| 跟踪器 | 视频利用率η |
|---|---|
| USOT[ | 36.7 |
| UTC-DMT (Ours) | 72.9 |
| 跟踪器 | 帧跨度S |
|---|---|
| LUDT | 10.0 |
| USOT[ | 41.1 |
| UTC-DMT (Ours) | 68.5 |
Table 3 Average span of training frame
| 跟踪器 | 帧跨度S |
|---|---|
| LUDT | 10.0 |
| USOT[ | 41.1 |
| UTC-DMT (Ours) | 68.5 |
| 跟踪器(帧长度设置) | P |
|---|---|
| USOT[ | 0.668 |
| UTC-DMT(5) | 0.671 |
| UTC-DMT(6) | 0.677 |
| UTC-DMT(7) | 0.681 |
| UTC-DMT(8) | 0.681 |
Table 4 Cyclic memory training queue length
| 跟踪器(帧长度设置) | P |
|---|---|
| USOT[ | 0.668 |
| UTC-DMT(5) | 0.671 |
| UTC-DMT(6) | 0.677 |
| UTC-DMT(7) | 0.681 |
| UTC-DMT(8) | 0.681 |
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| AUC | P | ||
| SiamFC[ | 有监督 | 0.498 | 0.726 |
| SiamRPN[ | 有监督 | 0.527 | 0.748 |
| SiamRPN++[ | 有监督 | 0.613 | 0.807 |
| SiamAPN[ | 有监督 | 0.566 | 0.752 |
| SiamTPN[ | 有监督 | 0.660 | 0.858 |
| UDT[ | 无监督 | 0.480 | 0.672 |
| USOT[ | 无监督 | 0.502 | 0.668 |
| Ours | 无监督 | 0.514 | 0.681 |
Table 5 Results on the UAV123 dataset
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| AUC | P | ||
| SiamFC[ | 有监督 | 0.498 | 0.726 |
| SiamRPN[ | 有监督 | 0.527 | 0.748 |
| SiamRPN++[ | 有监督 | 0.613 | 0.807 |
| SiamAPN[ | 有监督 | 0.566 | 0.752 |
| SiamTPN[ | 有监督 | 0.660 | 0.858 |
| UDT[ | 无监督 | 0.480 | 0.672 |
| USOT[ | 无监督 | 0.502 | 0.668 |
| Ours | 无监督 | 0.514 | 0.681 |
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| AUC | P | ||
| SiamFC[ | 有监督 | 0.402 | 0.599 |
| SiamRPN[ | 有监督 | 0.508 | 0.685 |
| SiamRPN++[ | 有监督 | 0.551 | 0.735 |
| SiamAPN[ | 有监督 | 0.539 | 0.721 |
| SiamTPN[ | 有监督 | 0.647 | 0.831 |
| UDT[ | 无监督 | 0.401 | 0.585 |
| USOT[ | 无监督 | 0.499 | 0.651 |
| Ours | 无监督 | 0.510 | 0.676 |
Table 6 Results on the UAV20L dataset
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| AUC | P | ||
| SiamFC[ | 有监督 | 0.402 | 0.599 |
| SiamRPN[ | 有监督 | 0.508 | 0.685 |
| SiamRPN++[ | 有监督 | 0.551 | 0.735 |
| SiamAPN[ | 有监督 | 0.539 | 0.721 |
| SiamTPN[ | 有监督 | 0.647 | 0.831 |
| UDT[ | 无监督 | 0.401 | 0.585 |
| USOT[ | 无监督 | 0.499 | 0.651 |
| Ours | 无监督 | 0.510 | 0.676 |
| 算法 | 类别 | 评价指标 | ||
|---|---|---|---|---|
| EAO | Acc | Rob | ||
| SiamFC[ | 有监督 | 0.235 | 0.532 | 0.461 |
| SiamRPN[ | 有监督 | 0.344 | 0.560 | - |
| SiamRPN++[ | 有监督 | - | - | - |
| UDT[ | 无监督 | 0.299 | 0.570 | 0.331 |
| USOT[ | 无监督 | 0.351 | 0.593 | 0.336 |
| ULAST[ | 无监督 | 0.397 | 0.599 | 0.224 |
| Ours | 无监督 | 0.366 | 0.602 | 0.297 |
Table 7 Results on the VOT2016 dataset
| 算法 | 类别 | 评价指标 | ||
|---|---|---|---|---|
| EAO | Acc | Rob | ||
| SiamFC[ | 有监督 | 0.235 | 0.532 | 0.461 |
| SiamRPN[ | 有监督 | 0.344 | 0.560 | - |
| SiamRPN++[ | 有监督 | - | - | - |
| UDT[ | 无监督 | 0.299 | 0.570 | 0.331 |
| USOT[ | 无监督 | 0.351 | 0.593 | 0.336 |
| ULAST[ | 无监督 | 0.397 | 0.599 | 0.224 |
| Ours | 无监督 | 0.366 | 0.602 | 0.297 |
| 算法 | 类别 | 评价指标 | ||
|---|---|---|---|---|
| EAO | Acc | Rob | ||
| SiamFC[ | 有监督 | 0.188 | 0.503 | 0.585 |
| SiamRPN[ | 有监督 | - | - | - |
| SiamRPN++[ | 有监督 | 0.414 | 0.600 | 0.234 |
| UDT[ | 无监督 | 0.230 | 0.490 | 0.412 |
| USOT[ | 无监督 | 0.290 | 0.564 | 0.435 |
| ULAST[ | 无监督 | 0.347 | 0.569 | 0.304 |
| Ours | 无监督 | 0.304 | 0.571 | 0.422 |
Table 8 Results on the VOT2018 dataset
| 算法 | 类别 | 评价指标 | ||
|---|---|---|---|---|
| EAO | Acc | Rob | ||
| SiamFC[ | 有监督 | 0.188 | 0.503 | 0.585 |
| SiamRPN[ | 有监督 | - | - | - |
| SiamRPN++[ | 有监督 | 0.414 | 0.600 | 0.234 |
| UDT[ | 无监督 | 0.230 | 0.490 | 0.412 |
| USOT[ | 无监督 | 0.290 | 0.564 | 0.435 |
| ULAST[ | 无监督 | 0.347 | 0.569 | 0.304 |
| Ours | 无监督 | 0.304 | 0.571 | 0.422 |
| 算法 | 类别 | 评价指标 | |||
|---|---|---|---|---|---|
| Suc | Pre | NPre | FPS | ||
| SiamFC[ | 有监督 | 0.571 | 0.533 | 0.663 | 55 |
| SiamRPN[ | 有监督 | - | - | - | - |
| SiamRPN++[ | 有监督 | 0.733 | 0.694 | 0.800 | 38 |
| UDT[ | 无监督 | 0.563 | 0.495 | 0.633 | 63 |
| USOT[ | 无监督 | 0.599 | 0.551 | 0.682 | 50 |
| ULAST[ | 无监督 | 0.649 | 0.585 | 0.725 | 40 |
| Ours | 无监督 | 0.614 | 0.570 | 0.691 | 52 |
Table 9 Results on the TrackingNet dataset
| 算法 | 类别 | 评价指标 | |||
|---|---|---|---|---|---|
| Suc | Pre | NPre | FPS | ||
| SiamFC[ | 有监督 | 0.571 | 0.533 | 0.663 | 55 |
| SiamRPN[ | 有监督 | - | - | - | - |
| SiamRPN++[ | 有监督 | 0.733 | 0.694 | 0.800 | 38 |
| UDT[ | 无监督 | 0.563 | 0.495 | 0.633 | 63 |
| USOT[ | 无监督 | 0.599 | 0.551 | 0.682 | 50 |
| ULAST[ | 无监督 | 0.649 | 0.585 | 0.725 | 40 |
| Ours | 无监督 | 0.614 | 0.570 | 0.691 | 52 |
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| EAO | Acc | ||
| SiamFC[ | 有监督 | 0.582 | 0.771 |
| SiamRPN[ | 有监督 | 0.637 | 0.851 |
| SiamRPN++[ | 有监督 | 0.696 | 0.923 |
| UDT[ | 无监督 | 0.639 | 0.843 |
| USOT[ | 无监督 | 0.589 | 0.806 |
| ULAST[ | 无监督 | 0.645 | 0.878 |
| Ours | 无监督 | 0.593 | 0.811 |
Table 10 Results on the OTB2015 dataset
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| EAO | Acc | ||
| SiamFC[ | 有监督 | 0.582 | 0.771 |
| SiamRPN[ | 有监督 | 0.637 | 0.851 |
| SiamRPN++[ | 有监督 | 0.696 | 0.923 |
| UDT[ | 无监督 | 0.639 | 0.843 |
| USOT[ | 无监督 | 0.589 | 0.806 |
| ULAST[ | 无监督 | 0.645 | 0.878 |
| Ours | 无监督 | 0.593 | 0.811 |
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| EAO | Acc | ||
| SiamFC[ | 有监督 | 0.336 | 0.339 |
| SiamRPN[ | 有监督 | 0.411 | 0.380 |
| SiamRPN++[ | 有监督 | 0.495 | 0.493 |
| UDT[ | 无监督 | 0.305 | 0.288 |
| USOT[ | 无监督 | 0.337 | 0.323 |
| ULAST[ | 无监督 | 0.468 | 0.448 |
| Ours | 无监督 | 0.349 | 0.327 |
Table 11 Results on the LaSOT dataset
| 算法 | 类别 | 评价指标 | |
|---|---|---|---|
| EAO | Acc | ||
| SiamFC[ | 有监督 | 0.336 | 0.339 |
| SiamRPN[ | 有监督 | 0.411 | 0.380 |
| SiamRPN++[ | 有监督 | 0.495 | 0.493 |
| UDT[ | 无监督 | 0.305 | 0.288 |
| USOT[ | 无监督 | 0.337 | 0.323 |
| ULAST[ | 无监督 | 0.468 | 0.448 |
| Ours | 无监督 | 0.349 | 0.327 |
| [1] | 王三泉, 王璐, 储珺, 等. 基于未知类别少样本学习的开放世界目标定位[J]. 南昌航空大学学报(自然科学版), 2024, 38(3): 33-44, 71. |
| WANG S Q, WANG L, CHU J, et al. Open world object localization based on few shot learning of unknown categories[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2024, 38(3): 33-44, 71 (in Chinese). | |
| [2] |
程旭东, 史彩娟, 高炜翔, 等. 面向域自适应目标检测的一致无偏教师模型[J]. 图学学报, 2025, 46(1): 114-125.
DOI |
|
CHENG X D, SHI C J, GAO W X, et al. Consistent and unbiased teacher model research for domain adaptive object detection[J]. Journal of Graphics, 2025, 46(1): 114-125 (in Chinese).
DOI |
|
| [3] |
蔡嘉诚, 董方敏, 孙水发, 等. 无监督单目深度估计研究综述[J]. 计算机科学, 2024, 51(2): 117-134.
DOI |
| CAI J C, DONG F M, SUN S F, et al. Unsupervised learning of monocular depth estimation: a survey[J]. Computer Science, 2024, 51(2): 117-134 (in Chinese). | |
| [4] |
王文鹏, 秦寅畅, 师文轩. 工业缺陷检测无监督深度学习方法综述[J]. 计算机应用, 2025, 45(5): 1658-1670.
DOI |
|
WANG W P, QIN Y C, SHI W X. Review of unsupervised deep learning methods for industrial defect detection[J]. Journal of Computer Applications, 2025, 45(5): 1658-1670 (in Chinese).
DOI |
|
| [5] | DWIBEDI D, AYTAR Y, TOMPSON J, et al. Temporal cycle-consistency learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1801-1810. |
| [6] |
冯尊登, 王洪元, 林龙, 等. 基于多分支注意网络与相似度学习策略的无监督行人重识别[J]. 图学学报, 2023, 44(2): 280-290.
DOI |
| FENG Z D, WANG H Y, LIN L, et al. Unsupervised person re-identification with multi-branch attention network and similarity learning strategy[J]. Journal of Graphics, 2023, 44(2): 280-290 (in Chinese). | |
| [7] | WANG X L, JABRI A, EFROS A A. Learning correspondence from the cycle-consistency of time[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 2561-2571. |
| [8] | WANG N, SONG Y B, MA C, et al. Unsupervised deep tracking[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1308-1317. |
| [9] |
WANG N, ZHOU W G, SONG Y B, et al. Unsupervised deep representation learning for real-time tracking[J]. International Journal of Computer Vision, 2021, 129(2): 400-418.
DOI |
| [10] | ZHENG J L, MA C, PENG H W, et al. Learning to track objects from unlabeled videos[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 13526-13535. |
| [11] | SHEN Q H, QIAO L, GUO J Y, et al. Unsupervised learning of accurate siamese tracking[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8091-8100. |
| [12] | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// The 29th International Conference on Neural Information Processing Systems - Volume 1. New York:ACM, 2015: 802-810. |
| [13] | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]// 2016 Computer Vision-ECCV 2016 Workshops. Cham: Springer, 2016: 850-865. |
| [14] | LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8971-8980. |
| [15] | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4277-4286. |
| [16] | 郑晗, 储珺. 目标检测中的特征融合方法[J]. 南昌航空大学学报(自然科学版), 2022, 36(4): 59-67. |
| ZHENG H, CHU J. Feature fusion method for object detection[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2022, 36(4): 59-67 (in Chinese). | |
| [17] | CHEN Z D, ZHONG B N, LI G R, et al. Siamese box adaptive network for visual tracking[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6667-6676. |
| [18] | GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6268-6276. |
| [19] | 储珺, 林文杰, 徐鹏. 目标检测中特征不匹配问题研究进展[J]. 南昌航空大学学报(自然科学版), 2021, 35(3): 1-8. |
| CHU J, LIN W J, XU P. Reviews of feature mismatch in object detection[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2021, 35(3): 1-8 (in Chinese). | |
| [20] | FU C H, CAO Z A, LI Y M, et al. Siamese anchor proposal network for high-speed aerial tracking[C]// 2021 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2021: 510-516. |
| [21] | CAO Z A, FU C H, YE J J, et al. SiamAPN++: Siamese attentional aggregation network for real-time UAV tracking[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2021: 3086-3092. |
| [22] | XING D T, EVANGELIOU N, TSOUKALAS A, et al. Siamese transformer pyramid networks for real-time UAV tracking[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 1898-1907. |
| [23] | SIO C H, MA Y J, SHUAI H H, et al. S2SiamFC: self-supervised fully convolutional Siamese network for visual tracking[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1948-1957. |
| [24] | YUAN W H, WANG M Y, CHEN Q F. Self-supervised object tracking with cycle-consistent Siamese networks[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2020: 10351-10358. |
| [25] | WU Q Q, WAN J, CHAN A B. Progressive unsupervised learning for visual object tracking[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2992-3001. |
| [26] | LIU L, ZHANG J N, HE R F, et al. Learning by analogy: reliable supervision from transformations for unsupervised optical flow estimation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 6488-6497. |
| [1] | BO Wen, JU Chen, LIU Weiqing, ZHANG Yan, HU Jingjing, CHENG Jinghan, ZHANG Changyou. Degradation-driven temporal modeling method for equipment maintenance interval prediction [J]. Journal of Graphics, 2025, 46(6): 1233-1246. |
| [2] | YU Nannan, MENG Zhengyu, FANG Youjiang, SUN Chuanyu, YIN Xuefeng, ZHANG Qiang, WEI Xiaopeng, YANG Xin. Frequency-aware hypergraph fusion for event-based semantic segmentation [J]. Journal of Graphics, 2025, 46(6): 1267-1273. |
| [3] | ZHANG Xinyun, ZHANG Liwen, ZHOU Li, LUO Xiaonan. Coffee fruit maturity prediction model based on image blocking interaction [J]. Journal of Graphics, 2025, 46(6): 1274-1280. |
| [4] | CAO Lujing, LU Peng. A video colorization method based on multiple reference images [J]. Journal of Graphics, 2025, 46(6): 1316-1326. |
| [5] | LIU Bokai, YIN Xuefeng, SUN Chuanyu, GE Huilin, WEI Ziqi, JIANG Yutong, PIAO Haiyin, ZHOU Dongsheng, YANG Xin. Research on UAV three-dimensional scene navigation based on deep reinforcement learning [J]. Journal of Graphics, 2025, 46(5): 1010-1017. |
| [6] | ZUO Yuqi, ZHANG Yunfeng, ZHANG Qiuyue, XU Yingcheng. Knowledge-aware recommendation based on hypergraph representation learning and Transformer model optimization [J]. Journal of Graphics, 2025, 46(5): 1050-1060. |
| [7] | ZHAI Yongjie, ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming, ZHAO Xiaoyu. Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection [J]. Journal of Graphics, 2025, 46(5): 950-959. |
| [8] | YANG Jiaxi, YU Letian, BAO Qirui, BI Sheng, MA Xiaodou, Yang Shengqi, JIANG Yutong, FANG Jianru, WEI Xiaopeng, YANG Xin. Object depth estimation methods for high photon flux environments [J]. Journal of Graphics, 2025, 46(4): 756-762. |
| [9] | NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(3): 532-541. |
| [10] | YU Bing, CHENG Guang, HUANG Dongjin, DING Youdong. 3D human mesh reconstruction based on dual-stream network fusion [J]. Journal of Graphics, 2025, 46(3): 625-634. |
| [11] | HU Yue, SUN Zhida, HUANG Hui. Visual analysis system for UAV path planning [J]. Journal of Graphics, 2025, 46(3): 655-665. |
| [12] | LEI Yulin, LIU Ligang. Transport-and-packing with buffer via deep reinforcement learning [J]. Journal of Graphics, 2025, 46(3): 697-708. |
| [13] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
| [14] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
| [15] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||