Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 88-94.DOI: 10.11996/JG.j.2095-302X.2023010088
• Image Processing and Computer Vision • Previous Articles Next Articles
Received:2022-04-27
															
							
																	Revised:2022-07-05
															
							
															
							
																	Online:2023-10-31
															
							
																	Published:2023-02-16
															
						Contact:
								ZHAO Jun   
													About author:GU Yu (1996-), master student. His main research interests cover computer vision and deep learning. E-mail:2378209338@qq.com				
													Supported by:CLC Number:
GU Yu, ZHAO Jun. Research on image detection algorithm of freight train brake shoe bolt and brake shoe fault[J]. Journal of Graphics, 2023, 44(1): 88-94.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010088
| 层数 | 输出尺寸 | 结构、类型 | 
|---|---|---|
| Conv 1 | 150×150 | 7×7, 64, s2 | 
| Pool 1 | 75×75 | 3×3, max, s2 | 
| Conv 2 | 75×75 | |
| Conv 3 | 38×38 | |
| Conv 4 | 38×38 | |
| Conv 5 | 19×19 | 
Table 1 Diagram of residual block
| 层数 | 输出尺寸 | 结构、类型 | 
|---|---|---|
| Conv 1 | 150×150 | 7×7, 64, s2 | 
| Pool 1 | 75×75 | 3×3, max, s2 | 
| Conv 2 | 75×75 | |
| Conv 3 | 38×38 | |
| Conv 4 | 38×38 | |
| Conv 5 | 19×19 | 
| 数据集 | 闸瓦钎 丢失  |  闸瓦钎 正常  |  闸瓦 丢失  |  闸瓦钎 正常  | 
|---|---|---|---|---|
| 训练集 | 981 | 1359 | 479 | 1917 | 
| 测试集 | 109 | 155 | 51 | 213 | 
| 总计 | 1090 | 1514 | 530 | 2130 | 
Table 2 Category and quantity of experimental data sets
| 数据集 | 闸瓦钎 丢失  |  闸瓦钎 正常  |  闸瓦 丢失  |  闸瓦钎 正常  | 
|---|---|---|---|---|
| 训练集 | 981 | 1359 | 479 | 1917 | 
| 测试集 | 109 | 155 | 51 | 213 | 
| 总计 | 1090 | 1514 | 530 | 2130 | 
| 特征提取网络 | 分类准确度(%) | |
|---|---|---|
| 闸瓦钎丢失 | 闸瓦丢失 | |
| MobileNet | 88.00 | 94.25 | 
| ResNet50 | 88.17 | 96.18 | 
| ResNet50dw | 88.33 | 96.91 | 
Table 3 Comparative experimental results of backbone
| 特征提取网络 | 分类准确度(%) | |
|---|---|---|
| 闸瓦钎丢失 | 闸瓦丢失 | |
| MobileNet | 88.00 | 94.25 | 
| ResNet50 | 88.17 | 96.18 | 
| ResNet50dw | 88.33 | 96.91 | 
| 算法模型 | 闸瓦丢失(%) | 闸瓦钎丢失(%) | 单幅图像 平均检测用时(ms)  | ||
|---|---|---|---|---|---|
| 精确度 | 召回率 | 精确度 | 召回率 | ||
| Faster-RCNN | 91.49 | 98.47 | 80.95 | 85.04 | 85.26 | 
| YOLOv3 | 93.64 | 78.63 | 96.66 | 85.76 | 27.09 | 
| VGG16-SSD | 86.79 | 95.83 | 91.67 | 84.62 | 16.67 | 
| ResNet50-SSD | 94.19 | 95.29 | 94.40 | 87.62 | 20.08 | 
| ResNet50-SSD+feature fusion | 96.57 | 97.76 | 96.48 | 90.09 | 28.06 | 
| 改进后SSD | 97.01 | 97.01 | 96.85 | 89.50 | 19.13 | 
Table 4 Comparison of six detection network
| 算法模型 | 闸瓦丢失(%) | 闸瓦钎丢失(%) | 单幅图像 平均检测用时(ms)  | ||
|---|---|---|---|---|---|
| 精确度 | 召回率 | 精确度 | 召回率 | ||
| Faster-RCNN | 91.49 | 98.47 | 80.95 | 85.04 | 85.26 | 
| YOLOv3 | 93.64 | 78.63 | 96.66 | 85.76 | 27.09 | 
| VGG16-SSD | 86.79 | 95.83 | 91.67 | 84.62 | 16.67 | 
| ResNet50-SSD | 94.19 | 95.29 | 94.40 | 87.62 | 20.08 | 
| ResNet50-SSD+feature fusion | 96.57 | 97.76 | 96.48 | 90.09 | 28.06 | 
| 改进后SSD | 97.01 | 97.01 | 96.85 | 89.50 | 19.13 | 
																													Fig. 8 Comparison of detection effect of original SSD and improved SSD ((a) The original SSD algorithm for brake shoe bolt fault detection; (b) Algorithm of this paper for accurate detection)
| [1] | 冯映科. 心盘螺栓和闸瓦钎故障图像检测算法研究[D]. 兰州: 兰州交通大学, 2018. | 
| FENG Y K. Research on fault image detection algorithm of center plate bolts and brake shoe key[D]. Lanzhou: Lanzhou Jiatong University, 2018 (in Chinese). | |
| [2] | 姚炜铭, 王晓华, 吴楠. 基于改进SSD模型的缝纫手势图像检测方法[J]. 激光与光电子学进展, 2020, 57(18): 189-196. | 
| YAO W M, WANG X H, WU N. Sewing gesture image detection method based on improved SSD model[J]. Laser & Optoelectronics Progress, 2020, 57(18): 189-196 (in Chinese). | |
| [3] | 袁帅, 王康, 单义, 等. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 864-872. | 
| YUAN S, WANG K, SHAN Y, et al. Multi-scale object detection method based on multi-branch parallel dilated convolution[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(6): 864-872 (in Chinese). | |
| [4] |  
											 SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. 
																							 DOI PMID  | 
										
| [5] | GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Confer ence on Computer Vision. New York: IEEE Press, 2015: 1440-1448. | 
| [6] |  
											 REN S, HE K, GIRSHICK R, et al.  Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
																							 DOI PMID  | 
										
| [7] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. | 
| [8] | REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. | 
| [9] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision. Cham: Springer International Publishin, 2016: 21-37. | 
| [10] | 李兆洋. 基于深度学习的高铁扣件检测算法研究[D]. 成都: 西南交通大学, 2020. | 
| LI Z Y. Research on high speed rail fastener detection algorithm based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2020 (in Chinese). | |
| [11] | 罗隆福, 叶威, 王健. 基于深度学习的高铁接触网顶紧螺栓的缺陷检测[J]. 铁道科学与工程学报, 2021, 18(3): 605-614. | 
| LUO L F, YE W, WANG J. Defect detection of the puller bolt in high-speed railway catenary based on deep learning[J]. Journal of Railway Science and Engineering, 2021, 18(3): 605-614 (in Chinese). | |
| [12] | 赵冰, 代明睿, 李平, 等. 基于深度学习的铁路关键部件缺陷检测研究[J]. 铁道学报, 2019, 41(8): 67-73. | 
| ZHAO B, DAI M R, LI P, et al. Research on defect detection of railway key components based on deep learning[J]. Journal of the China Railway Society, 2019, 41(8): 67-73 (in Chinese). | |
| [13] | 郭忠峰, 张渊博, 王赫莹, 等. 深度学习目标检测算法在货运列车车钩识别中的应用[J]. 铁道科学与工程学报, 2020, 17(10): 2479-2484. | 
| GUO Z F, ZHANG Y B, WANG H Y, et al. Application of deep learning target detection algorithm in freight train coupler recognition[J]. Journal of Railway Science and Engineering, 2020, 17(10): 2479-2484 (in Chinese). | |
| [14] |  
											 汪洋, 王俊刚. 基于深度学习算法的铁路列车运行安全检测[J]. 中国安全科学学报, 2018, 28(S2): 41-45. 
																							 DOI  | 
										
|  
											 WANG Y, WANG J G. Study on safety inspection of railway train operation based on deep learning algorithm[J]. China Safety Science Journal, 2018, 28(S2): 41-45 (in Chinese). 
																							 DOI  | 
										|
| [15] | 刘鑫, 陈思溢, 陈小龙, 等. 基于深度学习的深层次多尺度特征融合目标检测算法[J]. 激光与光电子学进展, 2021, 58(12): 320-328. | 
| LIU X, CHEN S Y, CHEN X L, et al. Deep multi-scale feature fusion target detection algorithm based on deep learning[J]. Laser & Optoelectronics Progress, 2021, 58(12): 320-328 (in Chinese). | |
| [16] | 张云佐, 杨攀亮, 李汶轩. 基于改进SSD算法的铁路隧道漏缆卡具检测[J]. 激光与光电子学进展, 2021, 58(22): 391-398. | 
| ZHANG Y Z, YANG P L, LI W X. Detection of cable leakage fixture in railway tunnel based on improved SSD algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(22): 391-398 (in Chinese). | |
| [17] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2021-12-17]. https://arxiv.org/abs/1704.04861. | 
| [18] | 汪亚妮, 汪西莉. 基于注意力和特征融合的遥感图像目标检测模型[J]. 激光与光电子学进展, 2021, 58(2): 363-371. | 
| WANG Y N, WANG X L. Remote sensing image target detection model based on attention and feature fusion[J]. Laser & Optoelectronics Progress, 2021, 58(2): 363-371 (in Chinese). | 
| [1] | JIANG Wu-jun, ZHI Li-jia, ZHANG Shao-min, ZHOU Tao. CT image segmentation of lung nodules based on channel residual nested U structure [J]. Journal of Graphics, 2023, 44(5): 879-889. | 
| [2] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. | 
| [3] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. | 
| [4] | LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net [J]. Journal of Graphics, 2023, 44(2): 304-312. | 
| [5] | CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. | 
| [6] | LI Xiao-bo, LI Yang-gui, GUO Ning, FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. | 
| [7] | ZHAO Hui , ZHAO Yao , JIN Lin-lin , DONG Lan-fang , XIAO Xiao. Research and realization of small target smoke and fire detection technology based on YOLOX [J]. Journal of Graphics, 2022, 43(5): 783-790. | 
| [8] | ZHANG Dun, HUANG Zhi-kai, WANG Huan, WU Yi-peng, WANG Ying, ZOU Jia-hao . Research and application of wild mushrooms classification based on multi-scale features to realize hyperparameter evolution [J]. Journal of Graphics, 2022, 43(4): 580-589. | 
| [9] | HE Qi, LI Wen-long, SONG Wei, DU Yan-ling, HUANG Dong-mei, GENG Li-jia. Sea surface temperature prediction algorithm combined with residual spatial-temporal attention mechanism [J]. Journal of Graphics, 2022, 43(4): 677-684. | 
| [10] | HU Jun, GU Jing-jing, WANG Qiu-hong. Multimodal small target detection based on remote sensing image [J]. Journal of Graphics, 2022, 43(2): 197-204. | 
| [11] | ZHANG Yun-bo, YI Peng-fei, ZHOU Dong-sheng, ZHANG Qiang, WEI Xiao-peng. Efficient pedestrian detector combining depthwise separable convolution and standard convolution [J]. Journal of Graphics, 2022, 43(2): 230-238. | 
| [12] | XUE Jing-guo, HOU Xue-liang . Location of cast-in-place concrete structural members based on BIM + CV [J]. Journal of Graphics, 2022, 43(1): 156-162. | 
| [13] | JIANG Rong-qi , , PENG Yue-ping , XIE Wen-xuan , XIE Guo-rong. Improved YOLOv4 small target detection algorithm with embedded scSE module [J]. Journal of Graphics, 2021, 42(4): 546-555. | 
| [14] | BIAN Jing-shuai1, LU Jia-pin1, LUO Yue-tong1, ZHANG Min2 . Research and Application of Faster-RCNN Based M. Tuberculosis Detection Method [J]. Journal of Graphics, 2019, 40(3): 608-615. | 
| [15] | ZHU Shengfeng. A Hybrid Video Watermarking Algorithm Based on Artificial Bee Colony and Chaotic Mapping [J]. Journal of Graphics, 2018, 39(1): 21-29. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
