Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 304-312.DOI: 10.11996/JG.j.2095-302X.2023020304
Previous Articles Next Articles
LUO Qi-ming(), WU Hao(
), XIA Xin, YUAN Guo-wu
Received:
2022-08-12
Accepted:
2022-11-21
Online:
2023-04-30
Published:
2023-05-01
Contact:
WU Hao (1982-), lecturer, Ph.D. His main research interest covers digital image processing. E-mail:About author:
LUO Qi-ming (1997-), master student. His main research interests cover digital image processing and computer vision. E-mail:qimingluo@mail.ynu.edu.cn
Supported by:
CLC Number:
LUO Qi-ming, WU Hao, XIA Xin, YUAN Guo-wu. Prediction of damaged areas in Yunnan murals using Dual Dense U-Net[J]. Journal of Graphics, 2023, 44(2): 304-312.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020304
Fig. 1 Examples of damage types of murals (scratch in yellow frame, peeling in white frame, crack in green frame, fading in blue frame) ((a) Including scratches and peeling; (b) Including peeling, cracks and fading)
评估标准 | 分割模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|
U-Net | UNet+ | UNet++ | DeepLabV3+ | Swin-Unet | GSCNN | MOoSe | HarDNet | DDU | |
IoU | 44.85 | 45.32 | 47.98 | 32.11 | 43.11 | 48.49 | 40.43 | 45.51 | 50.99 |
Dice | 59.76 | 60.11 | 63.08 | 47.27 | 58.51 | 63.91 | 55.51 | 60.65 | 66.27 |
Table 1 Quantitative evaluation results of different models (%)
评估标准 | 分割模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|
U-Net | UNet+ | UNet++ | DeepLabV3+ | Swin-Unet | GSCNN | MOoSe | HarDNet | DDU | |
IoU | 44.85 | 45.32 | 47.98 | 32.11 | 43.11 | 48.49 | 40.43 | 45.51 | 50.99 |
Dice | 59.76 | 60.11 | 63.08 | 47.27 | 58.51 | 63.91 | 55.51 | 60.65 | 66.27 |
Dconv | MLP | IoU | Dice |
---|---|---|---|
- | - | 47.72 | 63.65 |
- | √ | 49.52 | 65.19 |
√ | - | 48.26 | 64.34 |
√ | √ | 50.99 | 66.27 |
Table 2 Ablation studies of different design choices (%)
Dconv | MLP | IoU | Dice |
---|---|---|---|
- | - | 47.72 | 63.65 |
- | √ | 49.52 | 65.19 |
√ | - | 48.26 | 64.34 |
√ | √ | 50.99 | 66.27 |
Fig. 7 Comparison of different method masks in murals restoration applications ((a) The restoration result of large holes; (b) The restoration result of small damages)
Fig. 8 Ablation study results (“w/o MLP” means removing attention mechanism, “FULL” means full model) ((a), (b) Means ablation results of large holes; (c), (d) Means ablation results of small damages)
[1] | 温利龙, 徐丹, 张熹, 等. 基于生成模型的古壁画非规则破损部分修复方法[J]. 图学学报, 2019, 40(5): 925-931. |
WEN L L, XU D, ZHANG X, et al. The inpainting of irregular damaged areas in ancient murals using generative model[J]. Journal of Graphics, 2019, 40(5): 925-931. (in Chinese) | |
[2] | PENG J L, LIU D, XU S C, et al. Generating diverse structure for image inpainting with hierarchical VQ-VAE[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10770-10779. |
[3] | DONG Q L, CAO C J, FU Y W. Incremental transformer structure enhanced image inpainting with masking positional encoding[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11348-11358. |
[4] |
BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3): 191-203.
DOI URL |
[5] | 张子迎, 税午阳, 周明全, 等. 数字壁画病害提取与修复算法研究[J]. 计算机应用研究, 2021, 38(8): 2495-2498, 2504. |
ZHANG Z Y, SHUI W Y, ZHOU M Q, et al. Research on disease extraction and inpainting algorithm of digital grotto murals[J]. Application Research of Computers, 2021, 38(8): 2495-2498, 2504. (in Chinese) | |
[6] | 吴萌, 王慧琴, 李文怡. 多尺度唐墓室壁画病害标记及修复技术研究[J]. 计算机工程与应用, 2016, 52(11): 169-174. |
WU M, WANG H Q, LI W Y. Research on multi-scale detection and image inpainting of Tang dynasty tomb murals[J]. Computer Engineering and Applications, 2016, 52(11): 169-174. (in Chinese) | |
[7] | JAIDILERT S, FAROOQUE G. Crack detection and images inpainting method for Thai mural painting images[C]// 2018 IEEE International Conference on Image, Vision and Computing. New York: IEEE Press, 2018: 143-148. |
[8] |
曹建芳, 田晓东, 贾一鸣, 等. 改进DeepLabV3+模型在壁画分割中的应用[J]. 计算机应用, 2021, 41(5): 1471-1476.
DOI |
CAO J F, TIAN X D, JIA Y M, et al. Application of improved DeepLabV3+ model in mural segmentation[J]. Journal of Computer Applications, 2021, 41(5): 1471-1476. (in Chinese) | |
[9] | 吕书强, 王诗涵, 侯妙乐, 等. 基于改进U-Net的壁画颜料层脱落病害区域提取[J]. 地理信息世界, 2022, 29(1): 69-74. |
LYU S Q, WANG S H, HOU M L, et al. Extraction of mural paint loss diseases based on improved U-net[J]. Geomatics World, 2022, 29(1): 69-74. (in Chinese) | |
[10] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. |
[11] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
DOI PMID |
[12] | LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5168-5177. |
[13] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-07-11]. https://arxiv.org/abs/1511.07122. |
[14] | HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 603-612. |
[15] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[EB/OL]. [2022-07-11]. https://arxiv.org/abs/1606.00915. |
[16] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
DOI URL |
[17] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[18] | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2022-07-11]. https://arxiv.org/abs/1706.05587. |
[19] | CHEN L C, YANG Y, WANG J, et al. Attention to scale: scale-aware semantic image segmentation[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3640-3649. |
[20] | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. [2022-07-11]. https://arxiv.org/abs/1406.6247. |
[21] | LEE S, CHOI W, KIM C, et al. ADAS: a direct adaptation strategy for multi-target domain adaptive semantic segmentation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 19174-19184. |
[22] | CHENG Y T, WEI F Y, BAO J M, et al. Dual path learning for domain adaptation of semantic segmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9062-9071. |
[23] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[24] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[25] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[26] |
HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100.
DOI URL |
[27] |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
DOI URL |
[28] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 833-851. |
[29] | CAO H, WANG Y Y, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[EB/OL]. [2022-07-11]. https://arxiv.org/abs/2105.05537. |
[30] | TAKIKAWA T, ACUNA D, JAMPANI V, et al. Gated-SCNN: gated shape CNNs for semantic segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 5228-5237. |
[31] | GALESSO S, BRAVO M A, NAOUAR M, et al. Probing contextual diversity for dense out-of-distribution detection[EB/OL]. [2022-07-11]. https://arxiv.org/abs/2208.14195. |
[32] | LIAO T Y, YANG C H, LO Y W, et al. HarDNet-DFUS: an enhanced harmonically-connected network for diabetic foot ulcer image segmentation and colonoscopy polyp segmentation[EB/OL]. [2022-07-11]. https://arxiv.org/abs/2209.07313. |
[33] | LEMPITSKY V, VEDALDI A, ULYANOV D. Deep image prior[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 9446-9454. |
[1] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. |
[2] |
CAO Yi-qin , ZHOU Yi-wei , XU Lu.
A real-time metallic surface defect detection algorithm based on E-YOLOX
[J]. Journal of Graphics, 2023, 44(4): 677-690.
|
[3] |
SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao .
Landscape image generation based on conditional residual
generative adversarial network
[J]. Journal of Graphics, 2023, 44(4): 710-717.
|
[4] |
YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping.
Monocular depth estimation based on Laplacian
pyramid with attention fusion
[J]. Journal of Graphics, 2023, 44(4): 728-738.
|
[5] |
GUO Yin-hong, WANG Li-chun, LI Shuang.
Image feature matching based on repeatability and
specificity constraints
[J]. Journal of Graphics, 2023, 44(4): 739-746.
|
[6] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[7] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[8] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. |
[9] | ZENG Wu, ZHU Heng-liang, XING Shu-li, LIN Jiang-hong, MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. |
[10] | LI Hong-an , ZHENG Qiao-xue , TAO Ruo-lin , ZHANG Min , LI Zhan-li , KANG Bao-sheng. Review of image super-resolutionbased on deep learning [J]. Journal of Graphics, 2023, 44(1): 1-15. |
[11] |
SHAO Ying-jie, YIN Hui, XIE Ying, HUANG Hua.
A sketch-guided facial image completion network via
selective recurrent inference
[J]. Journal of Graphics, 2023, 44(1): 67-76.
|
[12] |
GU Yu, ZHAO Jun .
Research on image detection algorithm of freight train brake
shoe bolt and brake shoe fault
[J]. Journal of Graphics, 2023, 44(1): 88-94.
|
[13] |
PAN Dong-hui, JIN Ying-han, SUN Xu, LIU Yu-sheng, ZHANG Dong-liang.
CTH-Net: CNN-Transformer hybrid network for garment image
generation from sketches and color points
[J]. Journal of Graphics, 2023, 44(1): 120-130.
|
[14] |
FAN Zhen, LIU Xiao-jing, LI Xiao-bo, CUI Ya-chao.
A homography estimation method robust to illumination and occlusion
[J]. Journal of Graphics, 2023, 44(1): 166-176.
|
[15] |
ZHU Lei , LI Dong-biao , YAN Xing-zhi , LIU Xiang-yang , SHEN Cai-hua.
Intelligent detection method of tunnel cracks based on improved
Mask R-CNN deep learning algorithm
[J]. Journal of Graphics, 2023, 44(1): 177-183.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||