Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 922-929.DOI: 10.11996/JG.j.2095-302X.2024050922
• Image Processing and Computer Vision • Previous Articles Next Articles
WU Peichen1(), YUAN Lining2,3, HU Hao1, LIU Zhao4, GUO Fang1(
)
Received:
2024-05-08
Revised:
2024-06-25
Online:
2024-10-31
Published:
2024-10-31
Contact:
GUO Fang
About author:
First author contact:WU Peichen (1997-), master student. His main research interest covers computer vision. E-mail:m13209406252@163.com
Supported by:
CLC Number:
WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion[J]. Journal of Graphics, 2024, 45(5): 922-929.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024050922
Fusion Method | AUC/% | Param/M | FLOPs/G | ||
---|---|---|---|---|---|
CUHK Avenue | UCSD Ped2 | LAD2000 | |||
Concat[ | 86.44 | 93.83 | 85.25 | - | - |
Concat+MS-CAM[ | 56.64 | 51.57 | 46.58 | 4×D×d+d2 | 17.29 |
Concat+SENet[ | 87.47 | 93.72 | 86.49 | 2×D×d | 1.03 |
Concat+MHSA[ | 86.41 | 94.70 | 85.93 | D×d+4×d2 | 94.90 |
LAFF | 89.91 | 98.92 | 87.00 | D×d | 0.61 |
Table 1 Ablation experiment results
Fusion Method | AUC/% | Param/M | FLOPs/G | ||
---|---|---|---|---|---|
CUHK Avenue | UCSD Ped2 | LAD2000 | |||
Concat[ | 86.44 | 93.83 | 85.25 | - | - |
Concat+MS-CAM[ | 56.64 | 51.57 | 46.58 | 4×D×d+d2 | 17.29 |
Concat+SENet[ | 87.47 | 93.72 | 86.49 | 2×D×d | 1.03 |
Concat+MHSA[ | 86.41 | 94.70 | 85.93 | D×d+4×d2 | 94.90 |
LAFF | 89.91 | 98.92 | 87.00 | D×d | 0.61 |
Method | AUC | ||
---|---|---|---|
CUHK Avenue | UCSD Ped2 | LAD 2000 | |
Baseline | 86.44 | 93.83 | 85.25 |
Baseline+LAFF | 89.91 | 98.92 | 87.00 |
Baseline+DBB | 86.48 | 94.57 | 85.93 |
Baseline+LAFF+DBB | 90.21 | 99.85 | 87.54 |
Table 2 Model performance with different improvement methods/%
Method | AUC | ||
---|---|---|---|
CUHK Avenue | UCSD Ped2 | LAD 2000 | |
Baseline | 86.44 | 93.83 | 85.25 |
Baseline+LAFF | 89.91 | 98.92 | 87.00 |
Baseline+DBB | 86.48 | 94.57 | 85.93 |
Baseline+LAFF+DBB | 90.21 | 99.85 | 87.54 |
Method | CUHK Avenue | UCSD Ped2 | LAD2000 |
---|---|---|---|
AST-AE[ | 85.20 | 96.60 | - |
文献[ | 87.10 | 96.70 | - |
文献[ | 89.10 | - | - |
DeepMIL[ | 87.53 | 90.19 | 70.18 |
AR-Net [ | 89.31 | 93.64 | 79.84 |
MLEP[ | 89.20 | - | 50.57 |
文献[ | 89.33 | 95.12 | 86.28 |
LFP_MBA[ | 89.80 | 99.40 | - |
文献[ | 88.50 | - | - |
MNAD[ | 82.80 | 90.20 | 45.84 |
STC-Net[ | 87.80 | 96.70 | - |
Ours | 90.21 | 99.85 | 87.54 |
Table 3 Comparison results with existing methods/%
Method | CUHK Avenue | UCSD Ped2 | LAD2000 |
---|---|---|---|
AST-AE[ | 85.20 | 96.60 | - |
文献[ | 87.10 | 96.70 | - |
文献[ | 89.10 | - | - |
DeepMIL[ | 87.53 | 90.19 | 70.18 |
AR-Net [ | 89.31 | 93.64 | 79.84 |
MLEP[ | 89.20 | - | 50.57 |
文献[ | 89.33 | 95.12 | 86.28 |
LFP_MBA[ | 89.80 | 99.40 | - |
文献[ | 88.50 | - | - |
MNAD[ | 82.80 | 90.20 | 45.84 |
STC-Net[ | 87.80 | 96.70 | - |
Ours | 90.21 | 99.85 | 87.54 |
[1] | 徐海涛. 基于深度学习的视频异常行为检测研究[D]. 北京: 北京交通大学, 2022. |
XU H T. Research on video anomalous behavior detection based on deep learning[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese). | |
[2] | LIU Y, YANG D K, WANG Y, et al. Generalized video anomaly event detection: systematic taxonomy and comparison of deep models[EB/OL]. [2024-03-11]. http://arxiv.org/abs/2302.05087. |
[3] | CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: 108213. |
[4] | 吕浩, 易鹏飞, 刘瑞, 等. 用于视频异常检测的时序多尺度自编码器[J]. 图学学报, 2022, 43(2): 223-229. |
LYU H, YI P F, LIU R, et al. Sequential multi-scale autoencoder for video anomaly detection[J]. Journal of Graphics, 2022, 43(2): 223-229 (in Chinese).
DOI |
|
[5] | SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6479-6488. |
[6] | WAN B Y, FANG Y M, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C]// 2020 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2020: 1-6. |
[7] | LIU W, LUO W, LI Z, et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]// IJCAI’19: The 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 3023-3030. |
[8] | WAN B Y, JIANG W H, FANG Y M, et al. Anomaly detection in video sequences: a benchmark and computational model[J]. IET Image Processing, 2021, 15(14): 3454-3465. |
[9] | 肖进胜, 申梦瑶, 江明俊, 等. 融合包注意力机制的监控视频异常行为检测[J]. 自动化学报, 2022, 48(12): 2951-2959. |
XIAO J S, SHEN M Y, JIANG M J, et al. Abnormal behavior detection algorithm with video-bag attention mechanism in surveillance video[J]. Acta Automatica Sinica, 2022, 48(12): 2951-2959 (in Chinese). | |
[10] | ZHOU Y Z, SUN X Y, LUO C, et al. Spatiotemporal fusion in 3D CNNs: a probabilistic view[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9826-9835. |
[11] | 张和为. 基于特征融合网络的视频人脸识别技术研究[D]. 桂林: 桂林电子科技大学, 2022. |
ZHANG H W. Research on video face recognition technology based on feature fusion network[D]. Guilin: Guilin University of Electronic Technology, 2022 (in Chinese). | |
[12] | 程相贵, 刘钊, 郭放. 结合双流I3D和注意力机制的视频异常事件检测[J]. 信息与电脑: 理论版, 2022, 34(24): 65-68. |
CHENG X G, LIU Z, GUO F. Video anomaly event detection combining dual-stream I3D and attention mechanism[J]. Information & Computer: Theory Edition, 2022, 34(24): 65-68 (in Chinese). | |
[13] | MA X, JI Z X, NIU S J, et al. MS-CAM: multi-scale class activation maps for weakly-supervised segmentation of geographic atrophy lesions in SD-OCT images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(12): 3443-3455. |
[14] |
黄少年, 文沛然, 全琪, 等. 基于多支路聚合的帧预测轻量化视频异常检测[J]. 图学学报, 2023, 44(6): 1173-1182.
DOI |
HUANG S N, WEN P R, QUAN Q, et al. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection[J]. Journal of Graphics, 2023, 44(6): 1173-1182 (in Chinese). | |
[15] | DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10881-10890. |
[16] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1-9. |
[17] |
闫善武, 肖洪兵, 王瑜, 等. 融合行人时空信息的视频异常检测[J]. 图学学报, 2023, 44(1): 95-103.
DOI |
YAN S W, XIAO H B, WANG Y, et al. Video anomaly detection combining pedestrian spatiotemporal information[J]. Journal of Graphics, 2023, 44(1): 95-103 (in Chinese). | |
[18] | ROKA S, DIWAKAR M. DSLSTM: a deep convolutional encoder-decoder architecture for abnormality detection in video surveillance[J]. Cluster Computing, 2024(17): 4925-4940. |
[19] | LI K C, WANG Y L, HE Y N, et al. UniFormerV2: unlocking the potential of image ViTs for video understanding[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 1632-1643. |
[20] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[21] | LV H, YUE Z Q, SUN Q R, et al. Unbiased multiple instance learning for weakly supervised video anomaly detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 8022-8031. |
[22] | PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 14360-14369. |
[23] | ZHAO M Y, LIU Y, LIU J, et al. Exploiting spatial-temporal correlations for video anomaly detection[C]// 2022 26th International Conference on Pattern Recognition. New York: IEEE Press, 2022: 1727-1733. |
[1] | LIU Jichen, LI Jinxing, WU Jia, ZHANG Wei, QI Yunuo, ZHOU Guoliang. Prospects for the application of large models technology in the power industry [J]. Journal of Graphics, 2024, 45(6): 1132-1144. |
[2] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[3] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[4] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[5] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[6] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[7] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[8] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[9] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[10] | PENG Wen, LIN Jinwei. A short chromosome classification method based on spatial attention and texture enhancement [J]. Journal of Graphics, 2024, 45(5): 1017-1029. |
[11] | LIU Zongming, HONG Wei, LONG Rui, ZHU Yue, ZHANG Xiaoyu. Research on automatic generation and application of Ruyuan Yao embroidery based on self-attention mechanism [J]. Journal of Graphics, 2024, 45(5): 1096-1105. |
[12] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[13] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[14] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[15] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||