Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 655-665.DOI: 10.11996/JG.j.2095-302X.2025030655
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
HU Yue(), SUN Zhida, HUANG Hui(
)
Received:
2024-07-11
Accepted:
2024-10-08
Online:
2025-06-30
Published:
2025-06-13
Contact:
HUANG Hui
About author:
First author contact:HU Yue (2000-), master student. His main research interest covers computer graphics. E-mail:hytraveler2000@gmail.com
Supported by:
CLC Number:
HU Yue, SUN Zhida, HUANG Hui. Visual analysis system for UAV path planning[J]. Journal of Graphics, 2025, 46(3): 655-665.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030655
Fig. 6 In process of visual analysis of the 3D reconstruction, the relevant requirements (R) correspond to the goal (T) to be achieved, and the internal logic between the different requirements
Fig. 7 In process of the visual analysis of IBR render quality, the related requirements (R) correspond to the objectives (T) achieved, and the internal logic between the different requirements
Fig. 8 The preprocessing of point clouds can enhance the selection effect of perspectives ((a) Greedy method can not guarantee the selection of reference view combination is good enough; (b) The optimized point cloud as input can assist the algorithm to select a better reference view combination)
Fig. 10 The visibility bitmap can be obtained by calculating whether the surface point cloud is visible in the input scene at each shooting point of the UAV
优化方案 | 场景类别 | 点云规模/万 | 平均可见性计算开销/ms | 优/% | 良/% | 差/% | 平均像素遮挡率/% |
---|---|---|---|---|---|---|---|
无优化 | 学校 | 10 | 5.4 | 76.18 | 22.09 | 1.73 | 0.111 |
小镇 | 10 | 7.3 | 88.92 | 10.89 | 0.18 | 0.043 | |
可见性非精确计算 | 学校 | 100 | 1.1 | 79.43 | 19.81 | 0.77 | 0.082 |
小镇 | 255 | 1.2 | 93.18 | 6.74 | 0.08 | 0.029 | |
非均匀点云优化 | 学校 | 100 | 1.1 | 81.61 | 18.01 | 0.38 | 0.068 |
小镇 | 255 | 1.2 | 93.70 | 6.22 | 0.08 | 0.029 | |
采集视角补充 | 学校 | 100 | 1.1 | 86.04 | 13.80 | 0.16 | 0.046 |
小镇 | 255 | 1.2 | 93.72 | 6.22 | 0.06 | 0.026 |
Table 1 Comparative experimental results
优化方案 | 场景类别 | 点云规模/万 | 平均可见性计算开销/ms | 优/% | 良/% | 差/% | 平均像素遮挡率/% |
---|---|---|---|---|---|---|---|
无优化 | 学校 | 10 | 5.4 | 76.18 | 22.09 | 1.73 | 0.111 |
小镇 | 10 | 7.3 | 88.92 | 10.89 | 0.18 | 0.043 | |
可见性非精确计算 | 学校 | 100 | 1.1 | 79.43 | 19.81 | 0.77 | 0.082 |
小镇 | 255 | 1.2 | 93.18 | 6.74 | 0.08 | 0.029 | |
非均匀点云优化 | 学校 | 100 | 1.1 | 81.61 | 18.01 | 0.38 | 0.068 |
小镇 | 255 | 1.2 | 93.70 | 6.22 | 0.08 | 0.029 | |
采集视角补充 | 学校 | 100 | 1.1 | 86.04 | 13.80 | 0.16 | 0.046 |
小镇 | 255 | 1.2 | 93.72 | 6.22 | 0.06 | 0.026 |
方法 | 平均视角选择 时间开销/ms | 是否支持稀疏 参考视角集 | 平均像素 遮挡率/% |
---|---|---|---|
文献[ | 0.012 | 否 | / |
文献[ | 8.900 | 是 | 1.410 |
文献[ | 10.400 | 是 | 0.111 |
Ours | 6.200 | 是 | 0.068 |
Table 2 Results compared with other work
方法 | 平均视角选择 时间开销/ms | 是否支持稀疏 参考视角集 | 平均像素 遮挡率/% |
---|---|---|---|
文献[ | 0.012 | 否 | / |
文献[ | 8.900 | 是 | 1.410 |
文献[ | 10.400 | 是 | 0.111 |
Ours | 6.200 | 是 | 0.068 |
[1] | SHUM H, KANG S B. Review of image-based rendering techniques[EB/OL]. [2024-05-11]https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4067/1/Review-of-image-based-rendering-techniques/10.1117/12.386541.short. |
[2] | SCHMID K, HIRSCHMÜLLER H, DÖMEL A, et al. View planning for multi-view stereo 3D reconstruction using an autonomous multicopter[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1/4): 309-323. |
[3] | ZHANG H, YAO Y C, XIE K, et al. Continuous aerial path planning for 3D urban scene reconstruction[J]. ACM Transactions on Graphics, 2021, 40(6): 225. |
[4] | ZHOU X H, XIE K, HUANG K, et al. Offsite aerial path planning for efficient urban scene reconstruction[J]. ACM Transactions on Graphics, 2020, 39(6): 192. |
[5] | SMITH N, MOEHRLE N, GOESELE M, et al. Aerial path planning for urban scene reconstruction: a continuous optimization method and benchmark[J]. ACM Transactions on Graphics, 2018, 37(6): 183. |
[6] | KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 78. |
[7] | SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 519-528. |
[8] | LIU Y L, LIN L Q, HU Y, et al. Learning reconstructability for drone aerial path planning[J]. ACM Transactions on Graphics, 2022, 41(6): 197. |
[9] | LEVOY M, HANRAHAN P. Light field rendering[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 31-42. |
[10] | GORTLER S J, GRZESZCZUK R, SZELISKI R, et al. The lumigraph[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 43-54. |
[11] | DEBEVEC P E, TAYLOR C J, MALIK J. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 11-20. |
[12] | BUEHLER C, BOSSE M, MCMILLAN L, et al. Unstructured lumigraph rendering[C]// The 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 425-432. |
[13] | HEDMAN P, RITSCHEL T, DRETTAKIS G, et al. Scalable inside-out image-based rendering[J]. ACM Transactions on Graphics, 2016, 35(6): 231. |
[14] | XU J M, WU X C, ZHU Z H, et al. Scalable image-based indoor scene rendering with reflections[J]. ACM Transactions on Graphics, 2021, 40(4): 60. |
[15] | HEDMAN P, PHILIP J, PRICE T, et al. Deep blending for free-viewpoint image-based rendering[J]. ACM Transactions on Graphics, 2018, 37(6): 257. |
[16] | RIEGLER G, KOLTUN V. Free view synthesis[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 623-640. |
[17] | RIEGLER G, KOLTUN V. Stable view synthesis[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 12211-12220. |
[18] | PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 165-174. |
[19] | YI Z M, XIE K, LYU J H, et al. Where to render: studying renderability for IBR of large-scale scenes[C]// 2023 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2023: 356-366. |
[20] | BOUCHENY C. Interactive scientific visualization of large datasets: towards a perceptive-based approach[D]. Grenoble: Université Joseph Fourier, 2009. |
[21] | BAVOIL L, SAINZ M. Screen space ambient occlusion[EB/OL]. (2008-09-01) [2024-10-03]https://developper.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf. |
[22] | LIN L Q, LIU Y L, HU Y, et al. Capturing, reconstructing, and simulating: the UrbanScene3D dataset[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 93-109. |
[1] | WANG Daolei, DING Zijian, YANG Jun, ZHENG Shaokai, ZHU Rui, ZHAO Wenbin. Large scene reconstruction method based on voxel grid feature of NeRF [J]. Journal of Graphics, 2025, 46(3): 502-509. |
[2] | HUANG Zhiyong, SHE Yali, HUA Xifeng, XIANG Mengli, YANG Chenlong, DING Tuojun. DCSplat: Gaussian splatting with depth information constraints under sparse viewpoints [J]. Journal of Graphics, 2025, 46(3): 510-519. |
[3] | SUN Heyi, LI Yixiao, TIAN Xi, ZHANG Songhai. Image to 3D vase generation technology combining procedural content generation and diffusion models [J]. Journal of Graphics, 2025, 46(2): 332-344. |
[4] | ZHOU Wei, CANG Minnan, CHENG Haozong. Research on the method of 3D image reconstruction for cultural relics based on AR technology [J]. Journal of Graphics, 2025, 46(2): 369-381. |
[5] | QIU Jiaxin, SONG Qianyun, XU Dan. A neural radiation field-based approach to ethnic dance reconstruction [J]. Journal of Graphics, 2025, 46(2): 415-424. |
[6] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[7] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[8] | JIA Mingchao, FENG Bin, WU Peng, ZHANG Kun, SANG Shengju. A path planning for cultural tourism service robot combining improved A* algorithm and improved dynamic window approach [J]. Journal of Graphics, 2024, 45(3): 505-515. |
[9] | HUANG Jiahui, MU Taijiang. A survey of dynamic 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 14-25. |
[10] | SHI Min, WANG Bingqi, LI Zhaoxin, ZHU Dengming. A seamless texture mapping method with highlight processing [J]. Journal of Graphics, 2024, 45(1): 148-158. |
[11] | ZHOU Jingyi, ZHANG Qitong, FENG Jieqing. Hybrid-structure based multi-view 3D scene reconstruction [J]. Journal of Graphics, 2024, 45(1): 199-208. |
[12] | WANG Sijia, FENG Yingchaojie, ZHU Hang, ZHANG Wei, ZHU Lin, CHEN Wei. TCPVis: visual analysis system of traditional Chinese painting school based on six principles of Chinese painting [J]. Journal of Graphics, 2024, 45(1): 209-218. |
[13] | WANG Jiang’an, HUANG Le, PANG Dawei, QIN Linzhen, LIANG Wenqian. Dense point cloud reconstruction network based on adaptive aggregation recurrent recursion [J]. Journal of Graphics, 2024, 45(1): 230-239. |
[14] | CHENG Huan, WANG Shuo, LI Meng, QIN Lun-ming, ZHAO Fang. A review of neural radiance field for autonomous driving scene [J]. Journal of Graphics, 2023, 44(6): 1091-1103. |
[15] | CHEN Yi-tian, ZHANG Wei, TAN Si-wei, ZHU Rong-chen, WANG Yi-chao, ZHU Min-feng, CHEN Wei. Visualization comparison of historical figures cohorts [J]. Journal of Graphics, 2023, 44(6): 1227-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||